\(A=\frac{1}{1\times2}+\frac{1}{2\times3}+...+\frac{1}{49\times50}\)
so sánh M = \(\frac{1}{1\times2}+\frac{1}{2\times3}+...+\frac{1}{49\times50}\) với 1
\(M=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{49\cdot50}\)
\(M=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)
\(M=1-\frac{1}{50}\)
\(M=\frac{49}{50}\) < 1
VẬY M < 1
M=\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+............+\frac{1}{49}-\frac{1}{50}\)
=\(1-\frac{1}{50}<1\)
Vậy M<1
M = 1/1.2 + 1/2.3 +...........+ 1/49.50
M = 1 - 1/2 + 1/2 -1 /3 +............+ 1/49 - 1/50
M = 1 - 1/50
M = 49/50
Vì 49/50 < 1 => M < 1
\(\left(\frac{1}{1\times2}-1\right)+\left(\frac{1}{2\times3}-1\right)+...+\left(\frac{1}{49\times50}-1\right)\)Tính giúp mình nhé!!!
Tính:
a) M = \(\frac{1}{1\times2\times3}\)+\(\frac{1}{2\times3\times4}\)+\(\frac{1}{3\times4\times5}\)+ .... +\(\frac{1}{48\times49\times50}\)
Các bạn ghi đầy đủ lời giải ra nhé!
Áp dụng \(\frac{1}{n\left(n+1\right)\left(n+2\right)}=\frac{1}{2}\left(\frac{1}{n\left(n+1\right)}-\frac{1}{\left(n+1\right)\left(n+2\right)}\right)\)
\(M=\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{48.49.50}\)
\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{48.49}-\frac{1}{49.50}\right)\)
\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{49.50}\right)=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{2450}\right)=\frac{306}{1225}\)
Tính tổng:
a) D= 1x 2+ 2x 3+ 3x 4+ 4x 5x...x 99x 100.
b) B= 1x 3+ 2x 4+ 3x 5+ 4x 6+...+ 99x 101.
c) C= \(\frac{1}{1\times2\times3}\)+ \(\frac{1}{2\times3\times4}\)+ \(\frac{1}{3\times4\times5}\)+...+ \(\frac{1}{48\times49\times50}\).
Ta có:
\(D=1.2+2.3+3.4+4.5+...+99.100\)
\(\Leftrightarrow3D=1.2.\left(3-0\right)+2.3+\left(4-1\right)+3.4+\left(5-2\right)+4.5.\left(6-3\right)+...+99.100.\left(101-98\right)\)
\(\Leftrightarrow3D=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+4.5.6-3.4.5+...+99.100.101-98.99.100\)
\(\Leftrightarrow3D=99.100.101\Leftrightarrow D=\frac{99.100.101}{3}=333300\)
\(B=1.3+2.4+3.5+4.6+...+99.101\)
\(\Leftrightarrow B=\left(1.3+3.5+...+99.101\right)+\left(2.4+4.6+...+98.100\right)\)
\(\Leftrightarrow6B=\left(1.3.\left(5-\left(-1\right)\right)+3.5.\left(7-1\right)+...+99.101.\left(103-97\right)\right)+\left(2.4.\left(6-0\right)+4.6.\left(8-2\right)+...+98.100.\left(102-96\right)\right)\)
\(\Leftrightarrow B=\frac{99.101.103+3}{6}+\frac{98.100.102}{6}=338250\)
Vì các bước gần tương tự như bài a) nên mình bỏ bước.
\(C=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{48.49.50}\)
\(\Leftrightarrow C=\frac{1}{2}.\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{48.49.50}\right)\)
\(\Leftrightarrow C=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{48.49}-\frac{1}{49.50}\right)\)
\(\Leftrightarrow C=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{49.50}\right)=\frac{1}{2}.\frac{612}{1225}=\frac{306}{1225}\)
Cho B= \(\frac{1\times2}{1\times2\times3}+\frac{1\times2}{1\times2\times4}+\frac{1\times2}{1\times2\times3\times4}+\frac{1\times2}{1\times2\times3\times4\times5}+....+\frac{1\times2}{n,giao}\left(n\in N,n\ge3\right)\)
chứng tỏ B nhỏ hơn 3
\(A=\frac{3}{1\times1\times2\times2}+\frac{5}{2\times2\times3\times3}+...+\frac{19}{9\times9\times10\times10}\)
\(A=\left[1-\left(\frac{1}{1\times2\times3}+\frac{1}{2\times3\times4}+......+\frac{1}{98\times99\times100}\right)\right]\times\frac{14851}{19800}\)
Tính nhanh:\(\frac{1+2}{1\times2}+\frac{1+2+3}{1\times2\times3}+...+\frac{1+2+...+999}{1\times2\times...\times999}+\frac{1+2+...+999+1000}{1\times2\times...\times999\times1000}\)
Đề bài có vẻ bất ổn em ơi?
Tính nhanh:\(\frac{1\times2}{1+2}+\frac{1\times2\times3}{1+2+3}+..+\frac{1\times2\times...\times999}{1+2+...+999}+\frac{1\times2\times...\times999\times1000}{1+2+...+999+1000}\)
1x2/1+2 + ... + 1x2x ... x 999x1000/1+2+ ... +1000
= 1 + ... + 1
= 1 x 1000
= 1000