Tìm nghiệm nguyên dương phương trình
\(2+\sqrt{x+\frac{1}{2}+\sqrt{x+\frac{1}{4}}}=y\)
1. Giải phương trình: \(\left(\sqrt{x+3}-\sqrt{x}\right)\left(\sqrt{1-x}+1\right)=1\)=1
2. Tìm nghiệm nguyên dương của: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{6xy}=\frac{1}{6}\)
2.
Nhân hai vế của phương trình với 6xy:
6y+6x+1=xy6y+6x+1=xy
Đưa về phương trình ước số:
x(y−6)−6(y−6)=37x(y−6)−6(y−6)=37
⇔(x−6)(y−6)=37⇔(x−6)(y−6)=37
Do vai trò bình đẳng của xx và yy, giả sử x⩾y⩾1x⩾y⩾1, thế thì x−6⩾y−6⩾−5x−6⩾y−6⩾−5.
Chỉ có một trường hợp:
{−6=37y−6=1⇔{=43y=7{−6=37y−6=1⇔{=43y=7
Đáp số: (43;7),(7;43)
Tìm nghiệm nguyên của phương trình:
\(\sqrt{x+\frac{1}{2}\sqrt{x+\frac{1}{4}}}+x=y\)
Tìm nghiệm nguyên của các phương trình :
a, \(\sqrt{x}+\sqrt{x+5}=y\)
b, \(x+\sqrt{x+\frac{1}{2}+\sqrt{x+\frac{1}{4}}=y}\)
Bài 1: Tìm tất cả các cặp số nguyên (x;y) thỏa mãn: x2 - 2xy - x + y + 3 = 0
Bài 2: Giải phương trình nghiệm nguyên: ( y2+1 )( 2x2+x+1) = x+5
Bài 3: Cho các số thực dương a,b thỏa mãn a + b = 2.
Tìm giá trị nhỏ nhất của biểu thức : P = \(\frac{a}{\sqrt{4-a^2}}+\frac{b}{\sqrt{4-b^2}}\)
1. Ta có: \(x^2-2xy-x+y+3=0\)
<=> \(x^2-2xy-2.x.\frac{1}{2}+2.y.\frac{1}{2}+\frac{1}{4}+y^2-y^2-\frac{1}{4}+3=0\)
<=> \(\left(x-y-\frac{1}{2}\right)^2-y^2=-\frac{11}{4}\)
<=> \(\left(x-2y-\frac{1}{2}\right)\left(x-\frac{1}{2}\right)=-\frac{11}{4}\)
<=> \(\left(2x-4y-1\right)\left(2x-1\right)=-11\)
Th1: \(\hept{\begin{cases}2x-4y-1=11\\2x-1=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=0\\y=-3\end{cases}}\)
Th2: \(\hept{\begin{cases}2x-4y-1=-11\\2x-1=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=3\end{cases}}\)
Th3: \(\hept{\begin{cases}2x-4y-1=1\\2x-1=-11\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-5\\y=-3\end{cases}}\)
Th4: \(\hept{\begin{cases}2x-4y-1=-1\\2x-1=11\end{cases}}\Leftrightarrow\hept{\begin{cases}x=6\\y=3\end{cases}}\)
Kết luận:...
2. \(y^2+1\ge1>0;2x^2+x+1>0\) với mọi x; y
=> x + 5 > 0
=> \(y^2+1=\frac{x+5}{2x^2+x+1}\ge1\)
<=> \(x+5\ge2x^2+x+1\)
<=> \(x^2\le2\)
Vì x nguyên => x = 0 ; x = 1; x = -1
Với x = 0 ta có: \(y^2+1=5\Leftrightarrow y=\pm2\)
Với x = 1 ta có: \(y^2+1=\frac{3}{2}\)loại vì y nguyên
Với x = -1 ta có: \(y^2+1=2\Leftrightarrow y=\pm1\)
Vậy Phương trình có 4 nghiệm:...
a) Tìm nghiệm nguyên của phương trình sau : \(xy-2x-3y+1=0\)
b) Giải phương trình : \(x+\sqrt{x+\frac{1}{2}+\sqrt{x+\frac{1}{4}}}=2\)
xy - 2x - 3y + 1 = 0
<=> x(y - 2) = 3y - 1
<=> \(=\frac{3y-1}{y-2}=3+\frac{5}{y-2}\)
Để x nguyên thì (y - 2) phải là ước của 5 hay
(y - 2) = (1, 5, - 1, - 5)
Giải tiếp sẽ ra
a) giải hệ phương trình
\(\hept{\begin{cases}x+y+\frac{1}{x}+\frac{1}{y}=\frac{9}{2}\\xy+\frac{1}{xy}=\frac{5}{2}\end{cases}}\)
b) giải pt \(\sqrt{2x+1}-\sqrt{3x}=x-1\)
c) tìm nghiệm nguyên dương của pt x3y+xy3-3x2-3y2=17
\(\sqrt{2x+1}-\sqrt{3x}=x-1\)
ĐK: \(x\ge0\)
\(\sqrt{2x+1}-\sqrt{3x}=3x-\left(2x+1\right)\)
\(\Leftrightarrow\sqrt{2x+1}-\sqrt{3x}=\left(\sqrt{3x}-\sqrt{2x+1}\right)\left(\sqrt{3x}+\sqrt{2x+1}\right)\)
\(\Leftrightarrow\left(\sqrt{2x+1}-\sqrt{3x}\right)\left(1+\sqrt{3x}+\sqrt{2x+1}\right)=0\)
\(\Leftrightarrow\sqrt{2x+1}=\sqrt{3x}\Rightarrow x=1\left(tm\right)\)
c) \(x^3y+xy^3-3x^2-3y^2=17\)
\(\Leftrightarrow xy\left(x^2+y^2\right)-3\left(x^2+y^2\right)=17\Leftrightarrow\left(x^2+y^2\right)\left(xy-3\right)=17\)
\(\Leftrightarrow\left(x^2+y^2\right),\left(xy-3\right)\inƯ\left(17\right)\)
Do \(x^2+y^2\ge0\Rightarrow x^2+y^2\in\left\{1;17\right\}\)
TH1: \(\hept{\begin{cases}x^2+y^2=1\\xy-3=17\end{cases}}\Rightarrow\hept{\begin{cases}\frac{400}{y^2}+y^2=1\\x=\frac{20}{y}\end{cases}}\) (vô nghiệm)
TH2: \(\hept{\begin{cases}x^2+y^2=17\\xy-3=1\end{cases}}\Rightarrow\hept{\begin{cases}\frac{16}{y^2}+y^2=17\\x=\frac{4}{y}\end{cases}}\)
Ta có bảng:
y2 | 16 | 16 | 1 | 1 |
y | 4 | -4 | 1 | -1 |
x | 1 | -1 | 4 | -4 |
Vậy các cặp số nguyên thỏa mãn là (x;y) = (1;4) ; (-1;-4) ; (4;1) ; (-4;-1).
Tìm tham số m để hệ phương trình sau có nghiệm thực:
\(\begin{cases}X\sqrt{Y}+Y\sqrt{X}+2\left(\sqrt{X}+\sqrt{Y}\right)=12\sqrt{XY}\\X+2\sqrt{Y}+4\left(\frac{1}{X}+\frac{1}{\sqrt{Y}}\right)=m\left(\frac{X+2}{\sqrt{X}}\right)\end{cases}\)
a) Giải phương trình : \(\frac{x^2}{\left(x-1\right)^2}+\frac{x^2}{\left(x+1\right)^2}=\frac{10}{9}\)
b) Tìm nghiệm nguyên x thỏa mãn : \(\sqrt{x+2+3\sqrt{2x-5}}+\sqrt{x-2-3\sqrt{2x-5}}=2\sqrt{2}\)
c) Tìm m để phương trình sau vô nghiệm : \(\frac{x+1}{x\left(x-m+1\right)}=\frac{x}{x+m+2}\)
d) Cho phương trình : 2x6 + y2 - 2x3y - 320 = 0 có nghiệm (x1; y1); (x2; y2);...; (xn; yn). Tính giá trị của biểu thức x1 + x2 + ... + xn.
Thằng thắng nó giải tùm lum đấy coi chừng bị lừa đểu
cho a là nghiệm dương của phương trình: \(4x^2+x-\frac{1}{\sqrt{2}}=0\)
Tính Q=\(\frac{x\sqrt{2}+1}{\sqrt{4x^4+x\sqrt{2}+1}-2x^2}\)
Tìm nghiệm nguyên dương của phương trình \(\sqrt{x+y+3}+1=\sqrt{x}+\sqrt{y}\).
\(\sqrt{x+y+3}+1=\sqrt{x}+\sqrt{y}\)
Bình phương 2 vế, ta có:
\(x+y+3+1=x+y\)
\(x+y+3+1-x-y=0\)
\(4=0\) (vô lý)
Vậy phương trình vô nghiệm
-Chúc bạn học tốt-
(x,y) hoán vị của (4,9) . có vẻ hoạt động