CMR \(\frac{a}{n\left(n+a\right)}=\frac{1}{n}-\frac{1}{n+a}\)
CMR : \(\frac{a}{n\left(n+a\right)}=\frac{1}{n}-\frac{1}{n+a}\left(n,a\in N^{\cdot}\right)\)
\(\frac{a}{n\left(n+a\right)}\left(n,a\in N\right)\)
\(=\frac{n+a-n}{n\left(n+a\right)}\)
\(=\frac{n+a}{n\left(n+a\right)}-\frac{n}{n\left(n+a\right)}\)
\(=\frac{1}{n}-\frac{1}{n+a}\)
\(\rightarrowđpcm.\)
vl hay nhưng hỏi câu này mới cực hay
rút gọn
a.a.a.a.a.a.a.a.a=bao nhiêu
Ta có: \(\frac{a}{n\left(n+a\right)}\left(a,n\in N\right)\)
\(=\frac{a+n-n}{n\left(n+a\right)}\)
\(=\frac{a+n}{n\left(a+n\right)}-\frac{n}{n\left(a+n\right)}\)
\(=\frac{1}{n}-\frac{1}{n+a}\)
\(\Rightarrow dpcm\)
\(n\ge3;n\inℕ\)
CMR:
\(\frac{1}{a^n\left(b+c\right)}+\frac{1}{b^n\left(c+a\right)}+\frac{1}{c^n\left(a+b\right)}\ge\frac{3}{2}\)
Với a,b > 1 . CMR
\(\frac{1}{\left(1+a\right)^n}+\frac{1}{\left(1+b\right)^n}\ge\frac{2}{\left(1+\sqrt{ab}\right)^n}\)
Áp dụng bđt sau : \(\frac{a^n+b^n}{2}\ge\frac{\left(a+b\right)^n}{2}\)ta được
\(\frac{1}{\left(1+a\right)^n}+\frac{1}{\left(1+b\right)^n}\ge2\left(\frac{\frac{1}{1+a}+\frac{1}{1+b}}{2}\right)^n\)
Ta đi c/m bđt phụ : Với a,b > 1 thì \(\frac{1}{1+a}+\frac{1}{1+b}\ge\frac{2}{1+\sqrt{ab}}\)(1)
Bđt (1) \(\Leftrightarrow\frac{\left(a+b\right)+2}{1+\left(a+b\right)+ab}\ge\frac{2}{1+\sqrt{ab}}\)(Quy đồng VT)
\(\Leftrightarrow\left(a+b\right)+2+\left(a+b\right)\sqrt{ab}+2\sqrt{ab}\ge2+2\left(a+b\right)+2ab\)
\(\Leftrightarrow\left(a+b\right)\left(\sqrt{ab}-1\right)+2\sqrt{ab}\left(1-\sqrt{ab}\right)\ge0\)
\(\Leftrightarrow\left(\sqrt{ab}-1\right)\left(a+b-2\sqrt{ab}\right)\ge0\)
\(\Leftrightarrow\left(\sqrt{ab}-1\right)\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\)(Luôn đúng vs mọi a;b > 1)
Áp dụng bđt (1) được
\(\frac{1}{\left(1+a\right)^n}+\frac{1}{\left(1+b\right)^n}\ge2\left(\frac{\frac{1}{1+a}+\frac{1}{1+b}}{2}\right)^n\ge2\left(\frac{1}{1+\sqrt{ab}}\right)^n=\frac{2}{\left(1+\sqrt{ab}\right)^n}\)
Dấu "=" xảy ra tại a = b
Áp dụng buổi thức đơn ta được
\(\sqrt[a]{b}\)\(a+b:2\)\(>\)ta được
\(\frac{1}{1+A}\)+ \(x = {-b \pm \sqrt{b^2-4ac} \over 2a}\)
\(\frac{A+B=2}{ }\)
\(\frac{A+B=2}{1+A+B}\)
\(VẬY\)Nếu bạn làm tắt theo mik thì
Mik chưa ra đáp án được vì
\(B\sqrt[A]{B}\)CHỖ B BỊ LỖI
MAGICPENCIL,HÃY LUÔN :-)
CMR với n thuộc N; n>=2 ta có:
\(A=\left(1-\frac{2}{6}\right)\left(1-\frac{2}{12}\right)\left(1-\frac{2}{20}\right)...\left(1-\frac{2}{n\left(n+1\right)}\right)>\frac{1}{3}\)\(\frac{1}{3}\)
CMR: \(\frac{a}{n\left(n+a\right)}=\frac{1}{n}-\frac{1}{n+a}\)
CMR
a. \(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{\left(2\text{n}-1\right).\left(2\text{n}+2\right)}< \frac{1}{2}\)
b. \(\frac{1}{a^2}+\frac{1}{2^2}+....+\frac{1}{\text{n}^2}< \frac{5}{3}\left(\text{n}>1\right)\)
CMR
\(\frac{a}{n.\left(n+a\right)}=\frac{1}{n}-\frac{1}{n+a}\)(n.a thuộc N*)
Xét VP,ta có:
\(VP=\frac{1}{n}-\frac{1}{n+a}=\frac{n+a}{n\left(n+a\right)}-\frac{n}{n\left(n+a\right)}=\frac{n+a-n}{n\left(n+a\right)}=\frac{a}{n\left(n+a\right)}\)
Mà \(VT=\frac{a}{n\left(n+a\right)}\)
=>VT=VP
=>\(\frac{a}{n\left(n+a\right)}=\frac{1}{n}-\frac{1}{n+a}\)
BÀI 1: CMR với mọi số tự nhiên \(n\ge3\)
\(B=\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+....+\frac{1}{n^3}< \frac{1}{12}\)
BÀI 2: CMR với mọi số tự nhiên \(n\ge1\)
\(A=\left(1+\frac{1}{1.3}\right)\left(1+\frac{1}{2.4}\right)\left(1+\frac{1}{3.5}\right)...\left(1+\frac{1}{n\left(n+2\right)}\right)< 2\)
BÀI 3: CMR với mọi số tự nhiên \(n\ge2\)
\(B=\left(1-\frac{2}{6}\right)\left(1-\frac{2}{12}\right)\left(1-\frac{2}{20}\right)....\left(1-\frac{1}{n\left(n+1\right)}\right)>\frac{1}{3}\)
M.N giúp mk với!!!!!
vì bài dài quá nên mình làm từng bài 1 nhé
1. Ta thấy : \(\frac{1}{n^3}< \frac{1}{n^3-n}=\frac{1}{\left(n-1\right)n\left(n+1\right)}=\frac{1}{2}.\frac{\left(n+1\right)-\left(n-1\right)}{\left(n-1\right)n\left(n+1\right)}=\frac{1}{2}.\left[\frac{1}{\left(n-1\right)n}-\frac{1}{n\left(n+1\right)}\right]\)
Do đó :
\(B< \frac{1}{2}.\left[\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{\left(n-1\right)n}-\frac{1}{n\left(n+1\right)}\right]< \frac{1}{2}.\frac{1}{6}=\frac{1}{12}\)
2.
Nhận xét : \(1+\frac{1}{n\left(n+2\right)}=\frac{\left(n+1\right)^2}{n\left(n+2\right)}\)
Do đó :
\(A=\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}...\frac{\left(n+1\right)^2}{n\left(n+2\right)}=\frac{2.3...\left(n+1\right)}{1.2...n}.\frac{2.3...\left(n+1\right)}{3.4...\left(n+2\right)}=\frac{n+1}{1}.\frac{2}{n+2}< 2\)
3.
Nhận xét ; \(1-\frac{2}{n\left(n+1\right)}=\frac{n^2+n-2}{n\left(n+1\right)}=\frac{\left(n-1\right)\left(n+2\right)}{n\left(n+1\right)}\)
Do đó : \(B=\frac{1.4}{2.3}.\frac{2.5}{3.4}...\frac{\left(n-1\right)n\left(n+2\right)}{n\left(n+1\right)}\)
Rút gọn được : B = \(\frac{1}{n}.\frac{n+2}{3}>\frac{1}{3}\)
Kí hiệu [a] là phần nguyên của a
CMR: với mọi n nguyên dương ta luôn có
\(\left[\frac{3}{1.2}+\frac{7}{2.3}+...+\frac{n^2+n+1}{n\left(n+1\right)}\right]=n\)