a4+1 lớn hơn hoặc bằng a(a2+1)
Chứng minh a2 + b2 lớn hơn hoặc bằng 1/2 với a+b lớn hơn hoặc bằng 1.
Áp dụng BĐT Bunhiacopski, ta có:
a2 + b2 >= (a + b)2/2 >= 12/2 = 1/2 (đpcm)
Dấu bằng xảy ra khi a = b = 1/2
Cho 5 số a1,a2,a3,a4,a5 mà mỗi số bằng 1 hoặc -1
CMR: S5 khác 0 nếu S5=a1.a2+a2.a3+a3.a4+a4.a5+a5.a1
Cho n số a1, a2, a3, a4. a5,..., an và mỗi số bằng 1 hoặc -1. CMR Sn = a1.a2 + a2.a3 + a3.a4 + a4.a5 + a5.a6 +...+ an.a1 = 0 khi và chỉ khi n ⋮ 4.
Gíup mình với cảm ơn các bạn nhìu.!!!!!
Để chứng minh CMR này, chúng ta sẽ xem xét các trường hợp khác nhau khi n chia hết cho 4 và khi n không chia hết cho 4. Trường hợp 1: n chia hết cho 4 (n = 4k) Trong trường hợp này, chúng ta có n số a1, a2, a3, ..., an. Ta cần tính giá trị Sn = a1.a2 + a2.a3 + a3.a4 + ... + an.a1. Chú ý rằng mỗi số a1, a2, a3, ..., an xuất hiện đúng 2 lần trong Sn. Vì vậy, ta có thể viết lại Sn thành: Sn = (a1.a2 + a3.a4) + (a5.a6 + a7.a8) + ... + (an-1.an + a1.a2) Trong mỗi cặp số (ai.ai+1 + ai+2.ai+3), khi nhân hai số bằng nhau, ta luôn có kết quả là 1. Vì vậy, tổng của mỗi cặp số này sẽ luôn bằng 2. Vậy Sn = 2k = 0 khi và chỉ khi n chia hết cho 4. Trường hợp 2: n không chia hết cho 4 (n = 4k + m, với m = 1, 2, 3) Trong trường hợp này, chúng ta cũng có thể viết lại Sn thành: Sn = (a1.a2 + a3.a4) + (a5.a6 + a7.a8) + ... + (an-1.an + a1.a2) + an.a1 Nhưng lần này, chúng ta còn có thêm một số cuối cùng là an.a1. Xét mỗi cặp số (ai.ai+1 + ai+2.ai+3), khi nhân hai số bằng nhau, ta vẫn có kết quả là 1. Nhưng khi nhân số cuối cùng an.a1 với một số bằng -1, ta có kết quả là -1. Vì vậy, tổng của mỗi cặp số là 2, nhưng khi cộng thêm số cuối cùng an.a1, tổng sẽ có thể là 2 - 1 = 1 hoặc 2 + 1 = 3. Vậy Sn = 1 hoặc 3, không bao giờ bằng 0 khi n không chia hết cho 4. Từ hai trường hợp trên, ta có thể kết luận rằng Sn = 0 khi và chỉ khi n chia hết cho 4
Để chứng minh CMR này, chúng ta sẽ xét các trường hợp khác nhau khi n chia hết cho 4 và khi n không chia hết cho 4. Trường hợp 1: n chia hết cho 4 (n = 4k) Trong trường hợp này, chúng ta có n số a1, a2, a3, ..., an. Ta cần tính giá trị Sn = a1.a2 a2.a3 a3.a4 ... an.a1. Chú ý rằng mỗi số a1, a2, a3, ..., an xuất hiện đúng 2 lần trong Sn. Vì số bằng 1 hoặc -1, khi nhân hai số bằng nhau, ta luôn có kết quả là 1. Với n chia hết cho 4, ta có số lẻ các cặp số (ai.ai 1 ai 2.ai 3). Trong mỗi cặp này, khi nhân hai số bằng nhau, ta luôn có kết quả là 1. Vì vậy, tổng của mỗi cặp số này sẽ luôn bằng 1. Vậy Sn = 1 + 1 + ... + 1 (n/2 lần) = n/2 = 0 khi và chỉ khi n chia hết cho 4. Trường hợp 2: n không chia hết cho 4 (n = 4k + m, với m = 1, 2, 3) Trong trường hợp này, chúng ta cũng có số lẻ các cặp số (ai.ai 1 ai 2.ai 3). Trong mỗi cặp này, khi nhân hai số bằng nhau, ta luôn có kết quả là 1. Tuy nhiên, chúng ta còn có một số cuối cùng là an.a1. Với mỗi số bằng 1 hoặc -1, khi nhân với -1, ta sẽ đổi dấu của số đó. Vì vậy, tổng của mỗi cặp số là 1, nhưng khi cộng thêm số cuối cùng an.a1, tổng sẽ có thể là 1 - 1 = 0 hoặc 1 + 1 = 2. Vậy Sn = 0 hoặc 2, không bao giờ bằng 0 khi n không chia hết cho 4. Từ hai trường hợp trên, ta có thể kết luận rằng Sn = 0 khi và chỉ khi n chia hết cho 4.
trong 7 số tự nhiên a1;a2;a3;a4;...;a7 . Mỗi số bằng 1 hoặc -1 . Hỏi S=a1.a2+a2.a3+...+a7.a1 có thể bằng 0 được không ??????????????? !!!!!!!!!!!!!!!!!!!!!!!
Cho n số a1, a2, a3, a4, a5,..., an và mỗi số bằng 1 hoặc -1. CMR Sn = a1.a2 + a2.a3 + a3.a4 + a4.a5 + a5.a6 +...+ an.a1 = 0 khi và chỉ khi n chia hết cho 4.
Help me!!!!!!!!!!!!!!
Ai giải đúng cho 1 tick nha!
Bài 1:Cho 5 số a1, a2, a3, a4, a5 và mỗi số bằng 1 hoặc -1. Cmr: S5 khác 0 nếu S5 = a1a2 + a2a3 + a3a4 + a4a5 + a5a1
Bài 2:Cho 6 số a1, a2, a3, a4, a5; a6 và mỗi số bằng 1 hoặc -1. Cmr: S6 khác 0 nếu S5 = a1a2 + a2a3 + a3a4 + a4a5 + a5a6 + a6a1
Bài 3:Cho n số a1, a2, a3,..., an-1, an và mỗi số bằng 1 hoặc -1. Cmr: Sn khác 0 nếu S5 = a1a2 + a2a3 + a3a4 + a4a5 +...+ ana1
10. Cho n số a1, a2, a3, a4, a5,..., an và mỗi số = 1 hoặc -1. CMR Sn = a1.a2 + a2.a3 + a3.a4 + a4.a5 + a5.a6 +...+ an.a1 = 0 khi và chỉ khi n ⋮ 4.
Cho dãy số a1 (a với số 1 ở dưới ạ) , a2, a3, ......, a100 trong đó a1 = 1; a2= -1;ak= ak-2 ak-1 (k thuộc N, k lớn hơn hoặc bằng 3). Tính a100?
Cho dãy số a1 , a2 , a3 , ..... , a100 trong đó a1 = 1 , a2 = -1 , ak = ak - 2 . ak -1 ( k thuộc N , k lớn hơn hoặc bằng 3 ) . Tính a100
Câu hỏi của Tran nam khanh ly - Toán lớp 6 - Học toán với OnlineMath
Em xem bài ở link này nhé!
ta có:
a3=a1.a2=1.-1=-1
a4=a2.a3=-1.-1=1
a5 , a6 ,a7 làm tương tự
ta gộp a1,a2,a3 vào 1 cặp a4 ,a5, a6 vào một cặp aa7,a8,a9...
ta thấy dãy số trên theo quy luật 1,-1,-1 rồi 1,-1,-1
ta gộp 100 số 1 cặp 3 số thì có 100:3=33(dư 1)
theo quy luật ta có số bị thừa ra là 1
vậy a100=1
10. Cho n số a1, a2, a3, a4, a5,..., an và mỗi số = 1 hoặc -1. CMR Sn = a1.a2 + a2.a3 + a3.a4 + a4.a5 + a5.a6 +...+ an.a1 = 0 khi và chỉ khi n ⋮ 4.
Gíup mình với mình đang cần gấp!
Cảm ơn mn nhiều!
help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!