Tìm hai số tự nhiên a , b :
a) 6ab - a + 4b - 2 = 0
b) 6ab - 4a - 3b + 1 = 0
Phân tích đa thức thành nhân tử :
a) 4a^2b^2 + 36a^2b^3 + 6ab^4
b) 4a^2b^3 - 6a^3b^2
4a2b2 + 36a2b3 + 6ab4
= 2ab2(2a + 18ab + 3b2)
4a2b3 - 6a3b2
= 2a2b2(2b - 3a)
Bài 1: chỉ ra chỗ sai của một trong hai vế và sửa lại cho đúng các hằng dẳng thức
a) x^2 - 2xy + 4y^2 = (x - 2y)^2
b) a^2 + 24ab + b^2 = (4a + 3b)^2
c) 9x^2 + 6xy + y^2 = (3x - y)^2
d) a^3 - 8a^2b + 6ab^2 - 8b^3 = (a - 2b)^3
cho PT : ax^2 + bx + c = 0 (a khác 0)có 2 nghiệm thuộc đoạn [0;2] . tìm GTLN của biểu thức P=(8a^2 -6ab + b^2)/(4a^2 -2ab+ac)
cho 3 số a b c thỏa mãn 3a-3b+c=0 và 6ab+2bc-3ac=0 tính P =(a-1)2019+(b-1)2020+(c-1)2021
Ta có:
\(\left(3a-2b+c\right)^2=9a^2+4b^2+c^2+2\left(3ac-6ab-2bc\right)\)
\(\Rightarrow b^2=9a^2+4b^2+c^2\)
(vì \(3a-3b+c=0\Leftrightarrow3a-2b+c=-b\), \(6ab+2bc-3ac=0\))
\(\Leftrightarrow9a^2+3b^2+c^2=0\)
\(\Leftrightarrow a=b=c=0\).
Khi đó: \(P=\left(-1\right)^{2019}+\left(-1\right)^{2020}+\left(-1\right)^{2021}=-1\)
Ta có:
(3a−2b+c)2=9a2+4b2+c2+2(3ac−6ab−2bc)
⇒b2=9a2+4b2+c2
(vì 3a−3b+c=0⇔3a−2b+c=−b, 6ab+2bc−3ac=0)
⇔9a2+3b2+c2=0
⇔a=b=c=0.
Khi đó: P=(−1)2019+(−1)2020+(−1)2021=−1
xét phương trình bậc hai ax²+bx+c=0 có hai nghiệm thuộc [0, 2]. tìm giá trị lớn nhất của biểu thức P=(8a²-6ab+b²)/(4a²-2ab+ac)
Tìm a,b,c biết
a) \(a^2+25b^2+17+10b-8a=0\)
b) \(a^2+b^2-ab-2a-2b+4=0\)
c) \(a^2+2b^2+2ab-2a+2=0\)
d) \(5a^2+3b^2+c^2-4a+6ab+4c+6=0\)
a) \(a^2+25b^2+17+10b-8a=0\)
\(\Rightarrow a^2-8a+16+25b^2+10b+1=0\)
\(\Rightarrow\left(a-4\right)^2+\left(5b+1\right)^2=0\)
Vì \(\left(a-4\right)^2\ge0\) với mọi a
\(\left(5b+1\right)^2\ge0\) với mọi b
\(\Rightarrow\left(a-4\right)^2+\left(5b+1\right)^2\ge0\) với mọi a,b
Mà \(\left(a-4\right)^2+\left(5b+1\right)^2=0\)
\(\Rightarrow\left\{{}\begin{matrix}\left(a-4\right)^2=0\\\left(5b+1\right)^2=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a-4=0\\5b+1=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a=4\\5b=-1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a=4\\b=-\dfrac{1}{5}\end{matrix}\right.\)
Thực hiện nhanh các phép chia:
a) ( a 2 - 6ab + 9 b 2 ) : (a - 3b);
b) ( a 3 -9 a 2 b + 27a b 2 - 27 b 3 ) : ( 3 b - a ) 2 .
a) Phân tích a 2 – 6ab + 9 b 2 = ( a – 3 b ) 2 ; thực hiện phép chia được kết quả a – 3b.
b) Phân tích a 3 + 9 a 2 b + 27a b 2 – 27 b 3 = ( a – 3 b ) 3 ; thực hiện phép chia được kết quả a – 3b.
Phân tích các đa thức sau thành nhân tử :
a) 4a^2b^2 + 36a^2b^3 + 6ab^4
b) 3n( m - 3 ) + 5m( m - 3 )
c) 2a( x - y ) - ( y - x )
d) 4a^2b^3 - 6a^3b^2
4a2b2 + 36a2b3 + 6ab4
= 2ab2(2a + 18ab + 3b2)
3n(m - 3) + 5m(m - 3)
= (3n + 5m)(m - 3)
2a(x - y) - (y - x)
= (x - y)(2a + 1)
4a2b3 - 6a3b2
= 2a2b2(2b - 3a)
cho phương trình \(ax^2+bx+c=0\) \(\left(a\ne0\right)\)có hai nghiệm thuộc đoạn [0;2]. Tìm max của:
\(p=\frac{8a^2-6ab+b^2}{4a^2-2ab+ac}\)