cho số abc chứng tỏ rằng số này chia hết cho 7 và 143
Cho số abc chia hết cho 7. Chứng tỏ rằng 2a+3b+c chia hết cho 7
abc = 100a + 10b + c = 98 a + 7b + (2a+3b+c)
vì abc chia hết cho 7
98a+7b chia hết cho 7 nên 2a+3b+c chia hết cho 7
Cho hỏi mấy câu này nha ( kèm theo lời giải )
[ Câu 1 ] Chứng tỏ rằng số có dạng aaa bao giờ cũng chia hết cho 37
[ Câu 2 ] Chứng tỏ rằng nếu hai số có cùng số dư khi chia cho 7 thì hiệu của chúng chia hết cho 7
[ Câu 3 ] Chứng tỏ rằng hiệu ab - ba ( với a > b ) bao giờ cũng chia hết cho 9
1) aaa=a.111=a.3.37
Do đó aaa chia hết cho 37 ( đpcm)
2) Gọi 2 số có cùng số dư khi chia cho 7 là a và b ( cùng dư r, r<7)
Khi đó a=7k+r , b=7h+r
a-b=(7k+r)-(7h+r)=7k+r-7h-r=7k-7h=7(k-h)
=> ĐPCM
3) ab-ba=(10a+b)-(10b+a)=10a+b-10b-a=9a-9b=9(a-b)
Rỗ ràng chia hết cho 9 =>ĐPCM
Câu 1: aaa = a.111 = a.3.37 => chia hết cho 37
Câu 2:
Gọi a và b là hai số có cùng số dư m khi chia hết cho 7 nên
a-m chia hết cho 7
b-m chia hết cho 7
=> (a-m)-(b-m) = a-b chia hết cho 7
Câu 3: (ab - ba)=10.a+b-10.b-a=9.a-9.b=9(a-b) chia hết cho 9
1 chứng tỏ rằng số có dạng aaaaaa bao giờ cũng chia hết chia hết cho 7
2 chứng tỏ rằng số có dạng abc abc bao giờ cũng chia hết cho 11
1.Ta có :
aaaaaa = a . 111111 = a . 15873 . 7 \(\vdots\) 7
2.Ta có :
abc abc = abc . 1001 = abc . 7 . 11 . 13 \(\vdots\) 11
1.Chứng tỏ rằng số có dạng aaa aaa bao giờ cũng chia hết cho 7.
2. Chứng tỏ rằng số có dạng abc abc bao giờ cũng chia hết cho 11
1) Chứng tỏ rằng số có dạng aaa aaa bao giờ cũng chia hết cho 11 (aaa aaa có gạch trên đầu)
2) Chứng tỏ rằng số có dạng abc abc bao giờ cũng chia hết cho 11 (abc abc có gạch trên đầu)
3) Chứng tỏ rằng lấy một số có hai chữ số, cộng với một số gồm hai chữ số ấy viết theo thứ tự ngược lại, ta luôn luôn được một số chia hết cho 11 (chẳng hạn 37 + 73 = 110, chia hết cho 11).
Giúp mình vs, cần gấp. Bài này là bài 120, 121, 122 trong sách bài tập lớp 6. Không được giải theo sách bài tập nha!
\(\overline{aaaa}\) gạch trên đầu bn zô \(fx\) vô hình nì nè
Tó biết làm mỗi 2 bài trên thui
1 ) aaa aaa = a . 111 111 = a . 11 . 10101 => chia hết cho 11
2 ) abc abc = abc . 1001 = abc . 11 . 91 = > chia hết cho 11
làm theo cách thầy dạy chứ hoàn toàn ko nhìn sách giải nhé
bài 1:Chứng tỏ rằng
a)Tổng của 3 số tự nhiên liên tiếp là một số chia hết cho 3
b)Tổng của 4 số tự nhiên liên tiếp là một số không chia hết cho 4
bài 2 : chứng tỏ rằng số có dạng aaa aaa bao giờ cũng chia hết cho 7
bài 3 : chứng tỏ rằng số có dạng abc abc bao giờ cũng chia hết cho 11
bài 4 : chứng tỏ rằng lấy một số có hai chữ số , cộng với số gồm hai chữ số ấy viết theo thứ tự ngược lại, ta luôn luôn đc một số chia hết cho 11
Lưu ý: bạn nào trả lời xong 4 bài trên chính xác và làm xong đầu tiên sẽ đc like.
1 chữ số có 3 chữ số có tổng các chữ số bằng 7.Chứng tỏ rằng số này chia hết cho 7 khi các chữ số hàng chục và hàng đơn vị bằng nhau
1) Chứng minh rằng 102014 + 8 / 72 ( phân số ) là một số tự nhiên
2) Cho abc chia hết cho 7. Chứng tỏ rằng 2a + 3b + c chia hết cho 7
Bài 3. Tìm các chữ số sao cho số 7a4b chia hết cho 4 và chia hết cho 7
Bài 2. Tìm số tự nhiên n để 3n +
Bài 4. Chứng tỏ rằng trong 3 số tự nhiên liên tiếp luôn có 1 số chia hết cho 3
Bài 5. Chứng tỏ rằng tổng của 4 số tự nhiên liên tiếp không chia hết cho 4
Gọi 3 số tự nhiên liên tiếp là a; a+1 và a+2
TH1: Nếu a chia hết cho 3 => Đề bài đúng
TH2: Nếu a chia 3 dư 1 => a= 3k +1 (k thuộc N)
=> a+2 = 3k+1+2= 3k+3=3(k+1) chia hết cho 3 => a+2 chia hết cho 3 => Đề bài đúng
TH3: Nếu a chia 3 dư 2 => a=3k +2 (k thuộc N)
=> a + 1 = 3k + 2 + 1 = 3k +3 = 3(k+1) chia hết cho 3 => a+1 chia hết cho 3 => Đề bài đúng
TH1 , TH2 , TH3 => Trong 3 số tự nhiên liên tiếp luôn có 1 số chia hết cho 3 (ĐPCM)
Bài 5:
Gọi 4 số tự nhiên liên tiếp là b; b+1; b+2 và b+3
Tổng 4 số: b + (b+1) + (b+2) + (b+3) = (b+b+b+b) + (1+2+3) = 4b + 6 = 4(b+1) + 2
Ta có: 4(b+1) chia hết cho 4 vì 4 chia hết cho 4
Nhưng: 2 không chia hết cho 4
Nên: 4(b+1)+2 không chia hết cho 4
Tức là: b+(b+1)+(b+2)+(b+3) không chia hết cho 4
Vậy: Tổng 4 số tự nhiên liên tiếp không chia hết cho 4 (ĐPCM)
Bài 3:
\(\overline{7a4b}\) ⋮ 4 ⇒ \(\overline{4b}\)⋮ 4 ⇒ b = 0; 4; 8
Nếu b = 0 ta có: \(\overline{7a40}\)⋮ 7
⇒ 7040 + a \(\times\) 100 ⋮ 7
1005\(\times\) 7+ 5 + 14a + 2a ⋮ 7
5 + 2a ⋮ 7 ⇒ 2a = 2; 9; 16⇒ a = 1; \(\dfrac{9}{3}\);8 (1)
Nếu b = 8 ta có: \(\overline{7a4b}\) = \(\overline{7a48}\)⋮ 7
⇒ 7048 + a\(\times\) 100 ⋮ 7
1006\(\times\) 7 + 6 + 14a + 2a ⋮ 7
6 + 2a ⋮ 7 ⇒ 2a = 1; 8; 15 ⇒ a = \(\dfrac{1}{2}\); 4; \(\dfrac{15}{2}\) (2)
Nếu b = 4 ta có: \(\overline{7a4b}\) = \(\overline{7a44}\) ⋮ 7
⇒ 7044 + 100a ⋮ 7
1006.7 + 2 + 14a + 2a ⋮ 7
2 + 2a ⋮ 7 ⇒ 2a = 5; 12;19 ⇒ a = \(\dfrac{5}{2}\); 6; \(\dfrac{9}{2}\) (3)
Kết hợp (1); (2); (3) ta có:
(a;b) = (1;0); (8;0); (4;8); (6;4)