Cho 2 da thuc A= 2x^3 + x^2 - 4x +x^3 + 3 ; B= 6x + 3x^3 -2x + x^2 - 5
a, Tinh tong hai da thuc A+B
b, Tinh hieu hai da thuc A-B
c, tim nghiem cua da thuc hieu A - B vua tim duoc o y b.
cho hai da thuc A(x)=2x(x-2)-5(x+3)+7x^3 va B(x)=-x(x+5)-(2x-3)+x(3x^2-2x).a, thu gon A(x),B(x).b, tim nghiem cua da thuc P(x)=A(x)-B(x)-x^2(4x+5)
cho da thuc f(x)= -2+x^4+2x^2-3x^3+4x^4-5x^4+3x^3+3 chung minh rang da thuc f(x) ko co nghiem tai moi gia tri cua x
cho 2 da thuc :f(x)=-x^3+3x^2+4x
g(x)=2x^3-8x^2-2x
tim x de f(x)+g(x)=0
Ta có:
\(f\left(x\right)+g\left(x\right)=\left(-x^3+3x^2+4x\right)+\left(2x^3-8x^2-2x\right)\\
=-x^3+3x^2+4x+2x^3-8x^2-2x\\
=\left(-x^3+2x^3\right)+\left(3x^2-8x^2\right)+\left(4x-2x\right)\\
=x^3+\left(-5x^2\right)+2x\\
=x^3-5x^2+2x\)
Để \(f\left(x\right)+g\left(x\right)=0\) thì:
\(x^3-5x^2+2x=0\\
\Leftrightarrow x\left(x^2-5x+2\right)=0\)
\(\Leftrightarrow...\)
bai 1: cho cac da thuc
f(x)= x^5-3x^2+7x^4-x^5+2x^2-9x^3+x^2-1/4x+2x-3
g(x)=5x^4-x^5+1/2x^4+x^5+x^2-4x^4-2x^3+3x^2+x^3-1/4
a, thu gon va sap xep cac da thuc tren theo luy thua giam dancua ien
b,tinh f(1);f(-1); g(1); g(-1)
c,tinh f(x)+g(x);f(x)-g(x)
bai 1: cho cac da thuc
f(x)= x^5-3x^2+7x^4-x^5+2x^2-9x^3+x^2-1/4x+2x-3
g(x)=5x^4-x^5+1/2x^4+x^5+x^2-4x^4-2x^3+3x^2+x^3-1/4
a, thu gon va sap xep cac da thuc tren theo luy thua giam dancua ien
b,tinh f(1);f(-1); g(1); g(-1)
c,tinh f(x)+g(x);f(x)-g(x)
a)\(f\left(x\right)=x^5-3x^2+7x^4-x^5+2x^2-9x^3+x^2-\frac{1}{4}x+2x-3\)
\(=x^5-x^5+7x^4-9x^3-3x^2+2x^2+x^2-\frac{1}{4}x+2x-3\)
\(=7x^4-9x^3+\frac{7}{4}x-3\)
\(g\left(x\right)=5x^4-x^5+\frac{1}{2}x^2+x^5+x^2-4x^4-2x^3+3x^2+x^3-\frac{1}{4}\)
\(=-x^5+x^5+5x^4-4x^4-2x^3+x^3+\frac{1}{2}x^2+x^2+3x^2-\frac{1}{4}\)
\(=x^4-x^3+\frac{9}{2}x^2-\frac{1}{4}\)
b)\(f\left(1\right)=7.1^4-9.1^3+\frac{7}{4}.1-3=7-9+\frac{7}{4}-3=-\frac{13}{4}\)
\(f\left(-1\right)=7.\left(-1\right)^4-9.\left(-1\right)^3+\frac{7}{4}.\left(-1\right)-3=7+9-\frac{7}{4}-3=\frac{45}{4}\)
\(g\left(1\right)=1^4-1^3+\frac{9}{2}.1^2-\frac{1}{4}=1-1+\frac{9}{2}-\frac{1}{4}=\frac{17}{4}\)
\(g\left(-1\right)=\left(-1\right)^4-\left(-1\right)^3+\frac{9}{2}.\left(-1\right)^2-\frac{1}{4}=1+1+\frac{9}{2}-\frac{1}{4}=\frac{25}{4}\)
c) Ta có: f(x)+g(x)=\(7x^4-9x^3+\frac{7}{4}x-3+x^4-x^3+\frac{9}{2}x^2-\frac{1}{4}=7x^4+x^4-9x^3-x^3+\frac{9}{2}x^2+\frac{7}{4}x-3-\frac{1}{4}\)
\(=8x^4-10x^3+\frac{9}{2}x^2+\frac{7}{4}x-\frac{13}{4}\)
f(x)-g(x) =\(7x^4-9x^3+\frac{7}{4}x-3-x^4+x^3-\frac{9}{2}x^2+\frac{1}{4}=7x^4-x^4-9x^3+x^3-\frac{9}{2}x^2+\frac{7}{4}x-3+\frac{1}{4}\)
\(=6x^4-8x^3-\frac{9}{2}x^2+\frac{7}{4}x-\frac{11}{4}\)
Cho da thuc A=\(x^4+6x^2+8x^3-2x-3\);B=\(3x^2+x^4+4x^3-3x+5\)
Ting A-2B
\(A=x^4+6x^2+8x^3-2x-3\)
\(B=3x^2+x^4+4x^3-3x+5\)\(\Rightarrow2B=6x^2+2x^4+8x^3-6x+10\)
\(\Rightarrow A-2B=x^4+6x^2+8x^3-2x-3\)\(-6x^2-2x^4-8x^3+6x-10\)
\(=-x^4+4x-13\)
Ta có
\(A=x^4+8x^3+6x^2-2x-3\)
\(B=x^4+4x^3+3x^2-3x+5\Rightarrow2B=2x^4+8x^3+6x^2-6x+10\)
\(A-2B=x^4+8x^3+6x^2-2x-3\)\(-2x^4-8x^3-6x^2+6x-10\)
\(A-2B=-x^4+4x-13\)
phan tich da thuc thanh nhan tu
A=x^6-2x^5-4x^4+6x^3+4x^2-2x-1
Cho da thuc p(x)= 6x^2-5x-1
q(x)= -2x^4+4x^3-3x^2+x
Tim nghiem Chung cua 2 da thuc
nghiem chung cua hai da thuc la 1
minh doan day, sai thi thoi
A=1/3(xy^2)^2.(-1/2x^2y)^2.4/5x^3
B=-2x^4y.1/4x^2y^2.4/5x^3
Thu gon da thuc tren
Xac dinh he so,tim bac cua da thuc vua tim dc
Tinh A+B
va A-B
Bai 2
A=15x^2y-7xy^2+8-y^3+7xy^2+2y^3-12x^2y-1/2
Thu gon da thuc
Tim bac cua da thuc
Tinh gia tri cua da thuc A tai x=-1/2,y=1