Cho tam giác abc, đường cao ah. Trên nửa mặt phẳng bờ bc chứa a vẽ điểm d và e sao cho tam giác abd vuông cân tại b, tam giác ace vuông cân tại c. CM ah, be, cd đồng quy
Cho tam giác ABC đường cao AH.Ở phía ngoài tam giác ABC vẽ các tam giác ACE vuông cân tại C và tam giác ABD vuông cân tại B : a, Trên tia đối của tia AH lấy điểm K sao cho AK = BC. CMR : BE vuông tại CK ; b, Cm : AH,BE,CD đồng quy tại và vẽ hình cho mk nhé đúng mk tk cho cảm ơn mn nhiều
Cho tam giác ABC đường cao AH.Ở phía ngoài tam giác ABC vẽ các tam giác ACE vuông cân tại C và tam giác ABD vuông cân tại B : a, Trên tia đối của tia AH lấy điểm K sao cho AK = BC. CMR : BE vuông tại CK ; b, Cm : AH,BE,CD đồng quy mk gửi bài này 3 lần rồi mong các bn giúp mk nhé
cho tam giác ABC vuông cân tại A. Về phía ngoài tam giác vẽ các tam giác vuông cân ABD và ACE vuông ở B và ở C. Kẻ đường cao AH, trên tia đối của tia AH lấy điểm I sao cho: AI=BC. Chứng minh:
a) Ba điểm A,D,E thẳng hàng
b) BE=CD=BI=CI
c) BE,CD và AH đồng quy
a, Ta có BD//AC ( cùng vuông với AB )
BD=AC ( gt về các tam giác cân )
=> DBCA là hình bình hành => AD //BC (1)
Tương tự chứng minh BAEC là hình bình hành => AE//BC (2)
=> A,D,E thẳng hàng theo tiên đề ơ cơ lít :D
Cho tam giác ABC vuông cân tại A. Về phía ngoài tam giác vẽ các tam giác vuông cân ABD và ACE vuông ở B và ở C. Kẻ đường cao AH, trên tia đối của tia AH lấy điểm I sao cho AI=BC. Chứng minh:
a) Ba điểm A,D,E thẳng hàng
b) BE=CD=BI=CI
c) BE,CD và AH đồng quy
Cho tam giác ABC đường cao AH.Ở phía ngoài tam giác ABC vẽ các tam giác ACE vuông cân tại C và tam giác ABD vuông cân tại B : a, Trên tia đối của tia AH lấy điểm K sao cho AK = BC. CMR : BE vuông tại CK ; b, Cm : AH,BE,CD đồng quy
Cho tam giác ABC nhọn, đường cao AH. Vễ ra phía ngoài tam giác ABC các tam giác ABD vuông cân tại B và ACE vuông cân tại E. Trên tia đối của tia AH lấy điểm K sao cho AK=BC. CM
A) tam giác DBC=tam giác BAK.
B) DC vuông với KB.
C) CD, KH,EB đồng quy tại 1 điểm
Cho tam giác ABC ,trên nửa mặt phẳng bờ BC không chứa điểm C vẽ tam giác ABD vuông cân tại A trên nửa mặt phẳng bờ AC không chứa điểm B vẽ tam giác ACE vuông cân tại A. Gọi M,P,Q theo thứ tự là trung điểm của BC, BD,CE. Tam giác MPQ là tam giác gì ? Vì sao
cho tam giác ABC nhọn ( AB < AC ) có đường cao AH. Trên nửa mặt phẳng bờ BC có chứa điểm A, vẽ tam giác ABE vuông cân tại B, tam giác ACF vuông cân tại C, E và F nằm ngoài tam giác ABC. Trên tia đối của tia AH lấy I sao cho AI = BC. chứng minh rằng
a) Chứng minh tam giác ABE = tam giác BEC, từ đó suy ra BI = CE
b)BI vuông góc với CE
c) AH, CE, BF đồng quy
a) chứng minh tam giác ABI = tam giác BEC
a) Ta có : \(\widehat{IAB}=180^0-\widehat{BAH}=180^0-\left(90^0-\widehat{ABC}\right)=90^0+\widehat{ABC}=\widehat{EBC}\)
Xét \(\Delta\)ABI và \(\Delta\)BEC có :
AI = BC(gt)
\(\widehat{IAB}=\widehat{EBC}\)(cmt)
AB = BE(tam giác ABE vuông cân tại B)
=> \(\Delta\)ABI = \(\Delta\)BEC (c-g-c)
b) \(\Delta\)ABI = \(\Delta\)BEC (câu a) nên : BI = EC(hai cạnh tương ứng)
\(\widehat{ECB}=\widehat{BIA}\)hay \(\widehat{ECB}=\widehat{BIH}\)
Gọi giao điểm của CE với AB là M
Ta có : \(\widehat{MCB}+\widehat{MBC}=\widehat{BIH}+\widehat{IBH}=90^0\Rightarrow\widehat{BMC}=90^0\)
Do đó \(CE\perp BI\)
Gọi giao điểm của BF và AC là N
Ta có : \(\widehat{NCB}+\widehat{NBC}=\widehat{CIH}+\widehat{ICH}=90^0\Rightarrow\widehat{BNC}=90^0\)
=> BF vuông góc với CI
c) \(\Delta\)BIC có : AH,CE,BF là ba đường cao => AH,CE,BF đồng quy
cho tam giác ABC, vẽ đường cao AH. Vẽ về phía ngoài tam giác ấy các tam giác vuông cân ABD, ACE ( góc ABD= góc ACE =90o)
a) qua C vẽ đường thẳng vuông góc với BE cắt đường thẳng HA tại K. CM: AK=BC
b) CM AH,BE,CD đồng quy