Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thị Hồng Nguyễn
Xem chi tiết
Thị Hồng Nguyễn
Xem chi tiết
Đặng Anh Thư_Thư Đặng-A1
Xem chi tiết

Bài 1

\(\frac{2017}{2018}+\frac{2018}{2019}\)và \(\left(\frac{2017+2018}{2018+2019}\right)\)mk chữa lại đề luôn đó 

Ta tách :

\(\frac{2017}{\left(2018+2019\right)+2018}\)

đến đây ta tách 

\(\frac{2017}{2018+2019}< \frac{2017}{2018}\)

vậy....

mấy câu khác tương tự 

Xyz OLM
8 tháng 7 2019 lúc 14:58

2) \(\frac{\frac{1}{2003}+\frac{1}{2004}+\frac{1}{2005}}{\frac{2}{2003}+\frac{2}{2004}+\frac{2}{2005}}\)

\(\frac{\frac{1}{2003}+\frac{1}{2004}+\frac{1}{2005}}{2.\frac{1}{2003}+2.\frac{1}{2004}+2.\frac{1}{2005}}\)

=\(\frac{1\left(\frac{1}{2003}+\frac{1}{2004}+\frac{1}{2005}\right)}{2.\left(\frac{1}{2003}+\frac{1}{2004}+\frac{1}{2005}\right)}\)

\(\frac{1}{2}\)

3) \(2013+\left(\frac{2013}{1+2}\right)+\left(\frac{2013}{1+2+3}\right)+...+\left(\frac{2013}{1+2+3+...+2012}\right)\)

\(2013.\left(1+\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+3+...+2012}\right)\)

\(2013.\left(1+\frac{1}{3}+\frac{1}{6}+...+\frac{1}{2025078}\right)\)

\(2013.2.\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{4050156}\right)\)

=\(4026.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2012.2013}\right)\)

\(4026.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2012}-\frac{1}{2013}\right)\)

\(4026.\left(1-\frac{1}{2013}\right)\)

\(4026.\frac{2012}{2013}\)

=\(4024\)

Nguyễn Việt Long
Xem chi tiết
Galaxy
12 tháng 3 2018 lúc 20:26

hình như cái này đâu phải toán lớp 5 đâu bạn

Nguyễn Việt Long
12 tháng 3 2018 lúc 20:29

nhầm toán lớp 6

Trương Thị Viên
13 tháng 3 2020 lúc 15:47

12+13×14

Khách vãng lai đã xóa
Nguyễn Việt Long
Xem chi tiết
๖ۣۜҪôηɠ•Ҫɦúล
Xem chi tiết
Chillaccino
15 tháng 3 2019 lúc 13:57

1x2x3x...2018x2019 - 1x2x3x..2018 - 1x2x3x4x...x2017x20182 

= 1x2x3x...x2018x(2019 - 1 - 2018)

= 1x2x3x...x2018x0

= 0

Lê Thị Phương Linh
Xem chi tiết
Ngô Tuấn Anh
Xem chi tiết
Anh2Kar六
25 tháng 8 2021 lúc 11:16

\( S =1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2017}-\frac{1}{2018}+\frac{1}{2019}\)

\(\Rightarrow S=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2017}+\frac{1}{2018}+\frac{1} {2019}-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2018}\right) \)

\(\Rightarrow S=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2019}-\left(1+\frac{1}{2}+...+\frac{1}{1009}\right)\)

\(\(\Rightarrow S=\frac{1}{1010}+\frac{1}{1011}+...+\frac{1}{2019}\) \(\Rightarrow S=P\)\)

Khách vãng lai đã xóa
Victorique de Blois
25 tháng 8 2021 lúc 11:32

\(B=\frac{2018}{1}+\frac{2017}{2}+\frac{2016}{3}+...+\frac{1}{2018}\)

\(B=1+\left(\frac{2017}{2}+1\right)+\left(\frac{2016}{3}+1\right)+...+\left(\frac{1}{2018}+1\right)\)

\(B=\frac{2019}{2019}+\frac{2019}{2}+\frac{2019}{3}+...+\frac{2019}{2018}\)

\(B=2019\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}+\frac{1}{2019}\right)\)

ta có \(\frac{A}{B}=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2019}}{2019\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2019}\right)}=\frac{1}{2019}\)

Khách vãng lai đã xóa
Dương Thế Vinh
Xem chi tiết
Ngô thị huệ
Xem chi tiết
Xyz OLM
18 tháng 2 2020 lúc 22:31

\(A=\frac{1}{2018}+\frac{2}{2017}+...+\frac{2017}{2}+2018\)

\(=\left(\frac{1}{2018}+1\right)+\left(1+\frac{2}{2017}\right)+...+\left(\frac{2017}{2}+1\right)+1\)(2018 số hạng 1)

\(=\frac{2019}{2018}+\frac{2019}{2017}+...+\frac{2019}{2}+\frac{2019}{2019}=2019\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2019}\right)\)

Mà \(B=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2019}\)

=> Khi đó : \(\frac{A}{B}=\frac{2019\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2019}\right)}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2019}}=2019\)

Khách vãng lai đã xóa
Nguyễn Thảo Nhi
21 tháng 2 2021 lúc 21:30

??????????????????????????????????????????????????????????????????????????????????????????????????????????????

Khách vãng lai đã xóa