Tính tổng
A, 2/1*3+2/3*5+2/5*7+...+2/99.101
B,5/1*3+5/3*5+5/5*7*...+5/99*101
Bài tập *
a) 2/1×3 + 2/3×5 + 2/5×7 + ...............+ 2/99×101
b) 5/1×3 + 5/3×5 + 5/ 5×7 + ................ + 5/99×101
Giúp mk bài này nhé mk
\(\frac{2}{1.2}+\frac{2}{3.5}+\frac{2}{5.7}+......+\frac{2}{99.101}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+......+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}\)
\(=\frac{99}{100}\)
tính các tổng sau
1) A = 1+7+7^2+7^3+....+7^2007
2) B= 1+4 +4^2+4^3+....+4^100
3) C= 1+3^2 +3^4 +3^6+3^8+....+3^100
4) D= 7+7^3 + 7^5+7^7+7^9+....+7^99
5)E= 2+2^3+2^5+2^7+2^9+....+2^2009
6) B = 1+2^2+2^4+2^6+2^8+....+2^200
7) C= 5+5^3+5^5+5^9+....+5^101
8) D = 13+13^3+13^5+...+13^99
Mình làm mẫu 1 bài rùi bạn tự giải những bài còn lại nha
1, 7A = 7+7^2+7^3+....+7^2008
6A = 7A - A = (7+7^2+7^3+....+7^2008)-(1+7+7^2+....+7^2007) = 7^2008-1
=> A = (7^2008-1)/6
Tk mk nha
\(A=1+7+7^2+7^3+...+7^{2007}\)
\(\Rightarrow7A=7+7^2+7^3+7^4+...+7^{2008}\)
\(\Rightarrow7A-A=\left(7+7^2+7^3+...+7^{2008}\right)-\left(1+7+7^2+...+7^{2007}\right)\)
\(\Rightarrow6A=7^{2008}-1\)
\(\Rightarrow A=\frac{7^{2008}-1}{6}\)
4b=4+4^2+4^3+...+4^101
4b-b=(4+4^2+...+4^101)-(1+4+4^2+...+4^100)
3b=4^101-1
b=(4^101-1):3
Tính tổng:
2/1×3+2/3×5+2/5×7+...+2/99×101
Đặt \(A=\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{99\cdot101}\)
\(\Rightarrow A=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\)
\(\Rightarrow A=1-\frac{1}{101}\)
\(\Rightarrow A=\frac{100}{101}\)
\(\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\cdot\cdot\cdot\cdot+\frac{2}{99\cdot101}\)
=\(\frac{2}{1}-\frac{2}{3}+\frac{2}{3}-\frac{2}{5}+\cdot\cdot\cdot\cdot+\frac{2}{99}-\frac{2}{101}\)
=\(2-\frac{1}{101}\)
\(\frac{202}{101}-\frac{1}{101}=\frac{201}{101}\)
2/1×3+2/3×5+.......+2/99×101
5/1×3+5/3×5+5/5×7+.......+5/99×101
\(\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+....+\frac{2}{99\cdot101}\)
\(\frac{2}{1\cdot3}=\frac{3-1}{1\cdot3}=\frac{3}{1\cdot3}-\frac{1}{1\cdot3}=\frac{1}{1}-\frac{1}{3}=1-\frac{1}{3}\)
\(\frac{2}{3\cdot5}=\frac{5-3}{3\cdot5}=\frac{5}{3\cdot5}-\frac{3}{3\cdot5}=\frac{1}{3}-\frac{1}{5}\)
....
\(\frac{2}{99\cdot101}=\frac{101-99}{99\cdot101}=\frac{101}{99\cdot101}-\frac{99}{99\cdot101}=\frac{1}{99}-\frac{1}{101}\)
\(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}=1-\frac{1}{101}=\frac{100}{101}\)
\(\frac{5}{1\cdot3}+\frac{5}{3\cdot5}+\frac{5}{5\cdot7}+...+\frac{5}{99\cdot101}\)
=\(\frac{5}{2}\cdot\frac{2}{1\cdot3}+\frac{5}{2}\cdot\frac{2}{3\cdot5}+\frac{5}{2}\cdot\frac{2}{5\cdot7}+...+\frac{5}{2}\cdot\frac{2}{99\cdot101}\)
=\(\frac{5}{2}\cdot\left[\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{99\cdot101}\right]\)
=\(\frac{5}{2}\cdot\left[1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\right]\)
=\(\frac{5}{2}\cdot\left(1-\frac{1}{101}\right)\)
=\(\frac{5}{2}\cdot\frac{100}{101}\)
\(=\frac{250}{101}\)
= 3 - 1 / 1 x 3 + 5 - 3 / 3 x 5 + ... + 101 - 99 / 99 x 101
= 1 - 1 / 3 + 1 / 3 - 1 / 5 + 1 / 5 - ... - 1 / 99 + 1 / 99 - 1 / 101
gạch gạch gạch gạch ... gạch gạch
= 1 - 1 / 101
= 100 / 101
Tính B=1*3+5*7+9*11+...+97*101
C=1*3*5-3*5*7+5*7*9-....-97*99*101
D=1*99+3*97+5*95+...+49*51
E=1*3^3+3*5^3+5*7^3+...+49*51^3
F=1*99^2+2*98^2+3*97^2+...+49*51^2
cái này bạn mở sách bồi dưỡng toán ra trang gần cuối là thấy ngay ấy mà
bài 1
A=1*2*3+2*3*4+3*4*5+...+99*100*101
B=1*3*5+3*5*7+...+95*97*99
C=2*4+4*6+..+98*100
D=1*2+3*4+5*6+...+99*100
E=1^2+2^2+3^2+...+100^2
G=1*3+2*4+3*5+4*6+...+99*101+100*102
H=1*2^2+2*3^2+3*4^2+...+99*100^2
I=1*2*3+3*4*5+5*6*7+7*8*9+...+98*99*100
K=1^2+3^2+5^2+...+99^2
A = 1*2*3 + 2*3*4 + 3*4*5 ... + 99*100*101
=> 4A = 1*2*3*4 + 2*3*4*4 + 3*4*5*4 + ... +99*100*101*4
=> 4A = 1*2*3*4 + 2*3*4*(5 - 1) + 3*4*5*( 6 - 2) + ... + 99*100*101*(102 - 98)
=> 4A = 1*2*3*4 + 2*3*4*5 - 1*2*3*4 + 3*4*5*6 - 2*3*4*5 + ... + 99*100*101*102 - 98*99*100*101
=> 4A = 99*100*101*102
=> 4A = 101989800
=> A = 25497450
Tính tổng
2/1*3+2/3*5+2/5*7+....+2/99*101
Ai trả lời tôi tick cả
\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\)
\(=2-\frac{2}{3}+\frac{2}{3}-\frac{2}{5}+\frac{2}{5}-\frac{2}{7}+...+\frac{2}{99}-\frac{2}{101}\)
\(=2-\frac{2}{101}=\frac{200}{101}\)
\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-.....+\frac{1}{99}-\frac{1}{100}=1-\frac{1}{100}=\frac{99}{100}\)
Tính:
a, A= 1+(-2)+(-3)+4+5+(-6)+(-7)+8+...+99-100-101+102+103
b,B=1+(-3)+5+(-7)+...+97+(-99)+101
1.tính
a)1-2+3-4+5-6+7-8+8-9+9-10
b)1-2+3-4+...+99-100
c)1-3+5-7+9-11+13-15
d)1-3+5-7+...+99-101
e)-1-2-3-4-...-99-100
a)\(1-2+3-4+5-6+7-8+8-9+9-10\)
=\(\left(1-2\right)+\left(3-4\right)+\left(5-6\right)+\left(7-8\right)+\left(8-9\right)+\left(9-10\right)\)
\(=\left(-1\right)+\left(-1\right)+\left(-1\right)+\left(-1\right)+\left(-1\right)+\left(-1\right)\)
\(=\left(-1\right).6\)
\(=-6\)
b)\(1-2+3-4+...+99-100\)
\(=\left(1-2\right)+\left(3-4\right)+...+\left(99-100\right)\)}\(\left[\left(100-1\right):1+1\right]:2=50\)(cặp)
\(=\left(-1\right)+\left(-1\right)+\left(-1\right)+...+\left(-1\right)\)} 50 số (-1)
\(=\left(-1\right).50\)
\(=-50\)
c)\(1-3+5-7+9-11+13-15\)
\(=\left(1-3\right)+\left(5-7\right)+\left(9-11\right)+\left(13-15\right)\)
\(=\left(-2\right)+\left(-2\right)+\left(-2\right)+\left(-2\right)\)
\(=\left(-2\right).4\)
\(=-8\)
d)\(1-3+5-7+...-99+101\) (Đối với bài này, có vẻ đề sai, mình đã sửa lại rồi
\(=\left(1-3\right)+\left(5-7\right)+...+\left(97-99\right)+101\) } \(\left[\left(99-1\right):2+1\right]:2=25\)(cặp)
\(=\left(-2\right)+\left(-2\right)+\left(-2\right)+...+\left(-2\right)\) } 25 số (-2)
\(=\left(-2\right).25\)
\(=-50\)
e)\(-1-2-3-4-...-99-100\)
\(=\left(-1\right)+\left(-2\right)+\left(-3\right)+...+\left(-99\right)+\left(-100\right)\)
\(=\left[\left(-1\right)+\left(-100\right)\right]+\left[\left(-2\right)+\left(-99\right)\right]+...+\left[\left(-51\right)+\left(-50\right)\right]\) } \(\left[\left(100-1\right):1+1\right]:2=50\)(cặp) (phần này của đề bài, không thay được như (-100) hoặc (-1))
\(=\left(-100\right)+\left(-100\right)+\left(-100\right)+...+\left(-100\right)\)} 50 số (-100)
\(=\left(-100\right).50\)
\(=-5000\)