A=1/2.4+1/4.6+1/6.8+...+1/48.50
B=1/16+1/48+1/96+...+1/880
giúp mk vs ạ:))
1/2.4 + 1/4.6 + 1/6.8 + ... + 1/98.100
có bn nào lm giùm mik vs
\(\frac{1}{2\cdot4}+\frac{1}{4\cdot6}+....+\frac{1}{98\cdot100}\)
\(=\frac{1}{2}\left(\frac{2}{2\cdot4}+\frac{2}{4\cdot6}+.......+\frac{2}{98\cdot100}\right)\)
\(=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+......+\frac{1}{98}-\frac{1}{100}\right)\)
\(=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{100}\right)=\frac{49}{200}\)
Đặt A = 1/2.4 + 1/4.6 + .... +1/98.100
\(2A=\frac{2}{2.4}+\frac{2}{4.6}+...+\frac{2}{98.100}\)
\(=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{98}-\frac{1}{100}\)
\(=\frac{1}{2}-\frac{1}{100}\)
\(=\frac{49}{100}\)
\(\Rightarrow A=\frac{49}{100}\div2=\frac{49}{200}\)
\(1.\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\)
\(2.\frac{4}{2.4}+\frac{4}{4.6}+\frac{4}{6.8}+...+\frac{4}{2008.2010}\)
\(3.\frac{1}{16}+\frac{1}{48}+\frac{1}{96}+...+\frac{1}{19600}\)
1)\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\)
\(=1-\frac{1}{101}\)
\(=\frac{100}{101}\)
2)\(=2\left(\frac{2}{2.4}+\frac{2}{4.6}+...+\frac{2}{2008.2010}\right)\)
\(=2\left(\frac{1}{2}-\frac{1}{4}+...+\frac{1}{2008}-\frac{1}{2010}\right)\)
\(=2\left(\frac{1}{2}-\frac{1}{2010}\right)\)
\(=2\times\frac{502}{1005}\)
\(=\frac{1004}{1005}\)
tự làm tiếp nhé
1.= \(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\)
= \(1-\frac{1}{101}\) = \(\frac{100}{101}\)
2.= \(2\cdot\left(\frac{2}{2\cdot4}+\frac{2}{4\cdot6}+\frac{2}{6\cdot8}+...+\frac{2}{2008\cdot2010}\right)\)
= \(2\cdot\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{2008}-\frac{1}{2010}\right)\)
= \(2\cdot\left(\frac{1}{2}-\frac{1}{2010}\right)\) = \(2\cdot\frac{502}{1005}\) = \(\frac{1004}{1005}\)
a)\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}=1-\frac{1}{101}=\frac{100}{101}\)
b)\(\frac{4}{2.4}+\frac{4}{4.6}+\frac{4}{6.8}+..+\frac{4}{2008.2010}=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{1004.1005}=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{1004}-\frac{1}{1005}=1-\frac{1}{1005}=\frac{1004}{1005}\)
c)\(\frac{1}{2}.\left(\frac{1}{8}+\frac{1}{24}+\frac{1}{48}+...+\frac{1}{9800}\right)=\frac{1}{4}.\left(\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+...+\frac{2}{98.100}\right)=\frac{1}{4}.\left(\frac{1}{2}-\frac{1}{100}\right)=\frac{49}{400}\)
tính A = 1/2.4 + 1/4.6 + 1/6.8 +...+ 1/100.102
A=1/2.4+1/4.6+........+1/100.102
A=1/2-1/4+1/4-1/6+.......+1/100-1/102
A=1/2-1/102
A=51/102-1/102
A=50/102
A=25/51
Tính
A= 1/2.4+1/4.6+1/6.8+.....+1/18.20
\(A=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-...+\frac{1}{18}-\frac{1}{20}\)
\(A=\frac{1}{2}-\frac{1}{20}\)
\(A=\frac{10}{20}-\frac{1}{20}\)
\(A=\frac{9}{20}\)
1/2.4+1/4.6+1/6.8+......1/2016.21018
giải nhanh lên nha mai mk thi rồi,mơn trước
\(\frac{1}{2.4}+\frac{1}{4.6}+....+\frac{1}{2016.2018}\)
\(=\frac{1}{2}.\left(\frac{2}{2.4}+\frac{2}{4.6}+...+\frac{2}{2016.2018}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{2018}\right)=\frac{1}{2}.\frac{504}{1009}=\frac{252}{1009}\)
\(\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+...+\frac{1}{2016.2018}\)
\(=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{2016}-\frac{1}{2018}\)
\(=\frac{1}{2}+\left(-\frac{1}{4}+\frac{1}{4}\right)+\left(-\frac{1}{6}+\frac{1}{6}\right)+...+\left(-\frac{1}{2016}+\frac{1}{2016}\right)-\frac{1}{2018}\)
\(=\frac{1}{2}+0+0+0+...+0-\frac{1}{2018}\)
\(=\frac{1}{2}-\frac{1}{2018}\)
\(=\frac{1009}{2018}-\frac{1}{2018}\)
\(=\frac{1008}{2018}=\frac{504}{1009}\)
Ai thấy tớ đúng k nha
tính tổng 1/2.4+1/4.6+1/6.8+......+1/38.40
Gọi tổng cần tính là \(A\)
Ta có: \(A=\dfrac{1}{2.4}+\dfrac{1}{4.6}+\dfrac{1}{6.8}+...+\dfrac{1}{38.40}\)
\(\Rightarrow2A=\dfrac{2}{2.4}+\dfrac{2}{4.6}+\dfrac{2}{6.8}+...+\dfrac{2}{38.40}\)
\(\Rightarrow2A=\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{8}+...+\dfrac{1}{38}-\dfrac{1}{40}\)
\(\Rightarrow2A=\dfrac{1}{2}-\dfrac{1}{40}=\dfrac{19}{40}\)
\(\Rightarrow A=\dfrac{\dfrac{19}{40}}{2}=\dfrac{19}{80}\)
Bai 1;Tinh tong
a) 1/2.4 + 1/4.6 + 1/6.8 +......+1/16.18 + 1/18.20
1/ 2.4 + 1/4.6 + ...+1/18.20
= 1/2 - 1/4 + 1/4 -1/6 + .... + 1/18.20
trừ hết đi cho nhau cuối cùng:
= 1/2 - 1/20 = 9/20
tính: 1/2.4 + 1/4.6 + 1/6.8 +...+1/30.32 =?
Tính nhanh:(1/2.4)+(1/4.6)+(1/6.8)+.....+(1/98.100)=