chứng tỏ trong 27 stn tùy ý luôn tồn tại 2 số sao cho tổng hoặc hiệu của chúng chia hết cho 50
chứng tỏ rằng trong 27 số tự nhiên tùy ý luôn tồn tại hai số sao cho tổng hoặc hiệu của chúng chia hết cho 50
trả lời nhanh mk tích cho 10 cái nhưng phải đúng
Câu hỏi của nguyen anh thu - Toán lớp 6 - Học toán với OnlineMath
Bạn tham khảo.
chứng minh rằng trong 27 số tự nhiên tùy ý luôn tồn tại 2 số sao cho tổng hoặc hiệu chúng chia hết cho 50
cmr trong 27 stn tuỳ ý luôn tồn tại 2 số sao cho tổng hoặc hiệu của chúng chia hết 50
Trong N có các Ư(50) là : {1;2;5;10;25;50}
Các số tự nhiên khác 0 khi chia cho 50 có 50 khả năng dư.
Nếu trong 27 số tự nhiên đó có 2 số cùng dư khi chia cho 50,vậy hiệu 2 số này chia hết cho 50(Bài toán được chứng minh)
Nếu trong 27 số tự nhiên không có 2 số nào có cùng số dư khi chia cho 50 =>ta có ít nhất 48 năng dư khi chia cho 50(loại ít nhất 2 số 0 và 25)
Ta chia 48 khả năng dư thành 24 nhóm : (1;49);(2;48);....;(24;26)
Vì có 27 số mà có 24 nhóm => Theo nguyên lí dirichlet sẽ có ít nhất 2 số có cùng một nhóm và đúng bằng 50 chia hết cho 50(bài toán được chứng minh)
Vậy trong 27 stn tuỳ ý luôn tồn tại 2 số sao cho tổng hoặc hiệu của chúng chia hết cho 50
chứng minh rằng trong 52 số tự nhiên tùy ý luôn tồn tại 2 số sao cho tổng hoặc hiệu của chúng chia hết cho 100.
CMR: trong 27 số tự nhiên tùy ý uôn tồn tại 2 số sao cho tổng hoặc hiệu của chúng đều chia hết cho 50
Chứng minh trong 27 số tự nhiên bất kì luôn tồn tại 2 số sao cho tổng hoặc hiệu của chúng chia hết cho 50
Chứng minh rằng không tồn tại 6 số nguyên dương phân biệt sao cho tổng của 4 số tùy ý trong chúng luôn chia hết cho tổng của 2 số còn lại.
Chứng minh rằng trong 5 số tự nhiên tùy ý tồn tại 2 số sao cho tổng hoặc hiệu cua chung chia hết cho 7
Chứng minh rằng trong 1007 số tự nhiên bất kỳ luôn tồn tại 2 số sao cho tổng hoặc hiệu của chúng chia hết cho 2001
Đề bài là 2011 chính xác hơn ( tất nhiên 2001 vẫn đúng, nhưng 2011 sẽ là số sát với lời giải hơn).
Ta làm như sau: Một số tự nhiên khi chia 2011 sẽ có thể có 2011 số dư 0;1;2;...;2010.
Chia các số dư này thành các nhóm 0, (1;2010), (2;2009),....,(1005;1006).
Có 1006 nhóm, mà có 1007 số nên theo nguyên lý Đirichle sẽ có 2 số ở cùng 1 nhóm. 2 số này sẽ có tổng hoặc hiệu chia hết cho 2011