tìm x biết
\([\frac{1}{2}x^2(2x-1)^m-\frac{1}{2}x^{m+2}]:\frac{1}{2}x^2=0\)
Tìm x ;
\(\left(\frac{1}{2}x^2\left(2x-1\right)^m-\frac{1}{2}x^{m+2}\right):\frac{1}{2}x^2=0\left(m\in N\right)\)
b)\(\left(1,78^{2x-2}-1,78^x\right):1,78^x=0\)
M = \(\frac{x^2+\sqrt{x}}{x-\sqrt{x}+1}+\frac{x^2-\sqrt{x}}{x+\sqrt{x}+1}+\frac{2x-2\sqrt{x}}{\sqrt{x}-1}\)
A, RG
B, TÌM x để M =0,M=4
C, tìm min M
với đk 0 ≤ x # 1, biểu thức đã cho xác định
P = (x+2)/(x√x-1) + (√x+1)/(x+√x+1) - (√x+1)/(x-1)
P = (x+2)/ (√x-1)(x+√x+1) + (√x+1)/ (x+√x+1) - 1/(√x-1) {hđt: x-1 = (√x-1)(√x+1)}
P = [(x+2) + (√x+1)(√x-1) - (x+√x+1)] / (x√x-1)
P = (x-√x)/(x√x-1) = (√x-1)√x /(√x-1)(x+√x+1)
P = √x / (x+√x+1)
- - -
ta xem ở trên là biểu thức rút gọn của P, để chứng minh P < 1/3 ta biến đổi tiếp:
P = 1/ (√x + 1 + 1/√x)
bđt côsi: √x + 1/√x ≥ 2 ; dấu "=" khi x = 1 nhưng do đk xác định nên ko có dấu "="
vậy √x + 1/√x > 2 <=> √x + 1 + 1/√x > 3 <=> P = 1/(√x + 1 + 1/√x) < 1/3 (đpcm)
1 tìm x biết ;
a, 0-|x + 1| = 5
b, 2 - | \(\frac{3}{4}\)- x | = \(\frac{7}{12}\)
c, 2 | \(\frac{1}{2}\)x - \(\frac{1}{3}\)| - \(\frac{3}{2}\)= \(\frac{1}{4}\)
d, | x - \(\frac{1}{3}\)| = \(\frac{5}{6}\)
e, \(\frac{3}{4}\)- 2 | 2x - \(\frac{2}{3}\)| = 2
f, \(\frac{2x-1}{2}\)= \(\frac{5+3x}{3}\)
d,
\(|x-\frac{1}{3}|=\frac{5}{6}\Rightarrow \left[\begin{matrix} x-\frac{1}{3}=\frac{5}{6}\\ x-\frac{1}{3}=-\frac{5}{6}\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=\frac{7}{6}\\ x=\frac{-1}{2}\end{matrix}\right.\)
e,
\(\frac{3}{4}-2|2x-\frac{2}{3}|=2\)
\(\Leftrightarrow 2|2x-\frac{2}{3}|=\frac{3}{4}-2=\frac{-5}{4}\)
\(\Leftrightarrow |2x-\frac{2}{3}|=-\frac{5}{8}<0\) (vô lý vì trị tuyệt đối của 1 số luôn không âm)
Vậy không tồn tại $x$ thỏa mãn đề bài.
f,
\(\frac{2x-1}{2}=\frac{5+3x}{3}\Leftrightarrow 3(2x-1)=2(5+3x)\)
\(\Leftrightarrow 6x-3=10+6x\)
\(\Leftrightarrow 13=0\) (vô lý)
Vậy không tồn tại $x$ thỏa mãn đề bài.
a,
$0-|x+1|=5$
$|x+1|=0-5=-5<0$ (vô lý do trị tuyệt đối của một số luôn không âm)
Do đó không tồn tại $x$ thỏa mãn điều kiện đề.
b,
\(2-|\frac{3}{4}-x|=\frac{7}{12}\)
\(|\frac{3}{4}-x|=2-\frac{7}{12}=\frac{17}{12}\)
\(\Rightarrow \left[\begin{matrix} \frac{3}{4}-x=\frac{17}{12}\\ \frac{3}{4}-x=\frac{-17}{12}\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=\frac{-2}{3}\\ x=\frac{13}{6}\end{matrix}\right.\)
c,
\(2|\frac{1}{2}x-\frac{1}{3}|-\frac{3}{2}=\frac{1}{4}\)
\(2|\frac{1}{2}x-\frac{1}{3}|=\frac{7}{4}\)
\(|\frac{1}{2}x-\frac{1}{3}|=\frac{7}{8}\)
\(\Rightarrow \left[\begin{matrix} \frac{1}{2}x-\frac{1}{3}=\frac{7}{8}\\ \frac{1}{2}x-\frac{1}{3}=-\frac{7}{8}\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=\frac{29}{12}\\ x=\frac{-13}{12}\end{matrix}\right.\)
1 tìm x biết ;
a, 0-|x + 1| = 5
b, 2 - | \(\frac{3}{4}\)- x | = \(\frac{7}{12}\)
c, 2 | \(\frac{1}{2}\)x - \(\frac{1}{3}\)| - \(\frac{3}{2}\)= \(\frac{1}{4}\)
d, | x - \(\frac{1}{3}\)| = \(\frac{5}{6}\)
e, \(\frac{3}{4}\)- 2 | 2x - \(\frac{2}{3}\)| = 2
f, \(\frac{2x-1}{2}\)= \(\frac{5+3x}{3}\)
TÌM X BIẾT \(\frac{x-1}{x^2-9x+20}+\frac{2x-2}{x^2-6x+8}+\frac{3x-3}{x^2-x-2}+\frac{4x-4}{x^2+6x+5}=0\)
từ đề\(\Leftrightarrow\frac{x-1}{x\left(x-4\right)-5\left(x-4\right)}+\frac{2x-2}{x\left(x-2\right)-4\left(x-2\right)}+\frac{3x-3}{x\left(x+1\right)-2\left(x+1\right)}+\frac{4x-4}{x\left(x+1\right)+5\left(x+5\right)}=0\)
\(\Leftrightarrow\left(x-1\right)\left(\frac{1}{\left(x-4\right)\left(x-5\right)}+\frac{2}{\left(x-2\right)\left(x-4\right)}+\frac{3}{\left(x-2\right)\left(x+1\right)}+\frac{4}{\left(x+1\right)\left(x+5\right)}=0\right)\)
\(\Leftrightarrow\left(x-1\right)\left(\frac{1}{x-4}-\frac{1}{x-5}+\frac{1}{x-2}-\frac{1}{x-4}+\frac{1}{x-2}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x-5}\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(\frac{2}{x-2}-\frac{2}{x-5}\right)=0\) vì \(\frac{2}{x-2}-\frac{2}{x-5}\)luôn khác 0 nên x-1=0 nên x=1.
Điều kiện xác định : x khác 4,5,2,-1. Do đó x=1 thỏa mãn. Vậy x=1
M=\(\frac{|x+1|+2x}{3x^2-2x-1}\)
a) Tìm điều kiện của M, rút gọn M
b)Tìm giá trị của M khi x thỏa mãn \(4x^2+5x-9=0\)
bài 2
a)giải pt
\(\frac{2}{1^2}\cdot\frac{6}{2^2}\cdot\frac{12}{3^2}\cdot\frac{20}{4^2}\cdot...\cdot\frac{110}{10^2}\cdot\left(x-2\right)=-20\left(x+1\right)+60\)
Cho biểu thức:
M=\(\left(\frac{2+x}{2-x}-\frac{4^2}{^{x^2-4}}-\frac{2-x}{2+x}\right):\frac{x^2-3x}{2x^2-x^3}:\frac{1}{x-3}\)
a, Tìm điều kiện của x đê M xác định
b, Rút gọn biểu thức
c, Tính giá trị của M khi x=\(-\frac{1}{2}\)
d, Tìm x để M\(\ge\)0
Cho x\(\ge\)0, x\(\ne1\).Tìm x biết:\(\frac{1+\sqrt{x}}{2-2\sqrt{x}}-\frac{1-\sqrt{x}}{2+2\sqrt{x}}-\frac{2x}{x-1}=2\)
Cho A=\((\frac{x^2+y^2}{x^2y^2}-\frac{1}{z^2}).\left(\frac{y^2+z^2}{y^2z^2}-\frac{1}{z^2}\right)\left(\frac{z^2+x^2}{z^2x^2}-\frac{1}{y^2}\right)\)
Biết \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\). CMR: A luôn có giá trị âm với mọi x, y, z khác 0.