tìm số nguyên n
để n+1/n-2 có giá trị là 1 số nguyên
để 12n+1/30n+2 là ps tối giản
Tìm tất cả các số nguyên để:
a) Phân số n+1/n-2 có giá trị là 1 số nguyên
b) Phân số 12n-1/30n +2 là 1 phân số tối giản
Giúp mình với mình cần gấp<3 tks nhé=))
1) tìm n sao cho phân số tối giản:
12n+1 / 30n+2
2) cho phân số:
n+19/n+6 ( n E N )
a) tìm giá trị n sao cho phân số có giá trị là số tự nhiên
b) tìm giá trị của n để phân số tối giản
Tìm tất cả số nguyên n để
a) Phân số \(\frac{n+1}{n-2}\)có giá trị là 1 số nguyên
b) Phân số \(\frac{12n+1}{30n+2}\)là phân số tối giản
\(\frac{n+1}{n-2}\) là số nguyên \(\Leftrightarrow n+1⋮n-2\)
\(\Rightarrow n-2+3⋮n-2\)
\(\Rightarrow3⋮n-2\)
\(\Rightarrow n-2\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
\(\Rightarrow n-2\in\left\{1;-1;3;-3\right\}\)
\(\Rightarrow n\in\left\{3;1;5;-1\right\}\)
tìm số nguyên n sao cho 12n + 1 / 30n + 2 là phân số tối giản
SAI ĐỀ RỒI BẠN ƠI PHẦN SỐ NÀY LUÔN TỐI GIẢN VỚI MỌI N
Gọi d là ƯCLN của cả tử và mẫu
Ta có: 12n+1 chia hết cho d 60n+5 chia hết cho d
=>
30n+2 chia hết cho d 60n+4 chia hết cho d
=> (60n+5) - (60n+4) chia hết cho d
=> 1 chia hết cho d
=> d = 1 (đpcm)
tìm tất cả các số nguyên n để p số 12n+1 / 30n +2 là phân số tối giản
tìm tất cả các số nguyên n để 12n+1/30n+2 là phân số tối giản
Gọi ƯCLN ( 12n+1,30n+2 ) = d
\(\Rightarrow\hept{\begin{cases}12n+1⋮d\\30n+2⋮d\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}60n+5⋮d\\60n+4⋮d\end{cases}}\)
\(\Rightarrow\)\(\left[\left(60n+5\right)-60n-4\right]\)\(⋮d\)
\(\Rightarrow\)1\(⋮d\)
\(\Rightarrow\)d = 1
Vậy phân số\(\frac{12n+1}{30n+2}\)tối giản với mọi n
Đặt \(12n+1;30n+2=d\)
\(12n+1⋮d\Rightarrow60n+5⋮d\)
\(30n+2\Rightarrow60n+4⋮d\)
Suy ra : \(60n+5-60n-4⋮d\Rightarrow1⋮d\Rightarrow d=1\)
Vậy ta có đpcm
CMR 12n + 1/30n + 2 là PS tối giản ( n thuộc N )
\(UCLN\left(12n+1;30n+2\right)=d\)
\(\Rightarrow\hept{\begin{cases}12n+1⋮d\\30n+2⋮d\end{cases}\Rightarrow\hept{\begin{cases}60n+5⋮d\\60n+4⋮d\end{cases}}}\)
\(\Rightarrow60n+5-60n-4⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=\pm1\)
\(\Rightarrow\frac{12n+1}{30n+2}\) la phan so toi gian
Gọi \(d\inƯC\left(12n+1,30n+2\right)\Rightarrow12n+1⋮d,30n+2⋮d\)
\(\Rightarrow5\left(12n+1\right)⋮d\)và \(2\left(30n+2\right)⋮d\)
\(\Rightarrow\left[\left(60n+5\right)-\left(60n+4\right)\right]⋮d\Rightarrow1⋮d\Rightarrow d=\pm1\)
Vậy \(\frac{12n+1}{30n+2}\)là phân số tối giản
Tìm các số nguyên n để:
Phân số 12n+1/30n+2 là phân số tối giản
tìm n để các ps sau là ps tối giản :
a,n+8/2n-5
b,12n+1/30n+2