Chứng minh rằng:
Với mọi số n nguyên dương thì (n+1) (n+2) (n+3)...(2n) chia hết cho 2^n
Chứng minh rằng:Với mọi số nguyên dương n thì 3n-2-2n+2+3n-2n chia hết cho 10
\(3^{n-2}-2^{n+2}+3^n-2^n\)
=\(3^n:9-2^n.4+3^n-2^n\)
=\(\left(3^n:9+3^n\right)-\left(2^n.4+2^n\right)\)
=\(3^n\left(\frac{1}{9}+1\right)-2^n\left(4+1\right)\)
=\(3^n.\frac{10}{9}-2^n.5\)
=\(\frac{3^2.3^{n-2}.10}{9}-2^{n-1}.2.5\)
=\(3^{n-2}.10-2^{n-1}.10\)
=\(\left(3^{n-2}-2^{n-1}\right).10\)\(⋮10\)
=>.....(tự biết)
Ta có:
3n-2-2n-2+3n-2n=3n:32-2n.22+3n-2n=3n:9-2n.4+3n-2n(1)
*Giả sử: n=2 => (1)=9:9-4.4+9-4=1-16+9-4=-15+9-4=-10(vì -10 chia hết cho 10 nên n có thể = 2)(2)
*Giả sử: n=3 => (1)=27:9-8.4+27-8=3-32+27-8=-29+27-8=-2-8=-10(vì -10 chia hết cho 10 nên n có thể = 3)(3)
*Giả sử: n=4 => (1)=81:9-16.4+81-16=9-64+81-16=-55+81-16=26-16=10(vì 10 chia hết cho 10 nên n có thể = 4)(4)
Tiếp tục áp dụng quy luật trên, ta được:
Từ (2), (3), (4),... ta được: Mọi số nguyên dương n thì 3n-2-2n+2+3n-2n chia hết cho 10
cảm ơn các bn nhìu nha!đồng ý kết bạnh vs mình nhé
Chứng minh rằng với mọi số nguyên dương n thì:
B = 3n+3 - 2n+3 + 3n+2 - 2n+1 chia hết cho 10;
Chứng minh rằng với mọi số nguyên dương n thì:
A = 3n+3 + 3n+1 + 2n+2 + 2n+1 chia hết cho 6
Từ đề bài ta có A= 3n+1 (32 + 1) + 2n+1 (2 +1) = 3n .3.2.5 + 2n .2.3
=> ĐPCM;
Chứng minh rằng với mọi số nguyên dương n thì : A = 3 n + 3 + 3 n + 1 + 2 n + 2 + 2 n + 1
Chia hết cho 6.
A = 3 n + 3 + 3 n + 1 + 2 n + 2 + 2 n + 1 = 3 n . 27 + 3 + 2 n + 1 . 4 + 2 = 3 n .30 + 2 n .6 = 6. 3 n .5 + 2 n ⋮ 6
Chứng minh rằng:Với mọi số nguyên dương n thì \(3^{n+2}\)-\(2^{n+2}+3^n-2^n\) chia hết cho n
Chứng minh rằng:với mọi số tự nhiên n,ta có n(n+1)(2n+1) chia hết cho 6
chứng minh rằng:với mọi số tự nhiên n thì :
a)(n+3)(n+6)chi hết cho 2
b)n(n+5)chia hết cho 2
chứng minh rằng với mọi số nguyên dương n thi (n+1).(n+2).(n+3).....(2n) chia hết cho 2n
(f) Chứng minh rằng với mọi số tự nhiên n > 1 thì: 5^n+2 + 26.5^n + 82n+1 chia hết cho 59.
(g) Chứng minh rằng với mọi số tự nhiên n > 1 thì số 4^2n+1 + 3^n+2chia hết cho 13.
(h) Chứng minh rằng với mọi số tự nhiên n > 1 thì số 5^2n+1 + 2^n+4+ 2^n+1 chia hết cho 23.
(i) Chứng minh rằng với mọi số tự nhiên n > 1 thì số 11n+2 + 122n+1 chia hết cho 133.
(j) Chứng minh rằng với mọi số tự nhiên n > 1: 5^2n−1 .26n+1 + 3^n+1 .2^2n−1 chia hết cho 38
1+2+3+4+5+6+7+8+9=133456 hi hi
đào xuân anh sao mày gi sai hả
???????????????????