tìm giá trị nhỏ nhất của da thức P=\(\frac{-2018}{\left(2019x-3\right)^2+2}\)
tìm giá trị nhỏ nhất của biểu thức A=\(\frac{\left|x-2016\right|+2017}{\left|x-2106\right|+2018}\)
Tìm giá trị nhỏ nhất của biểu thức sau:
B= (x+2)^2+(y-5/2)^2018-10
D= |2x-1|+|2x-5|
Tìm giá trị LỚN nhất của biểu thức
A= \(\frac{3}{\left(2x-3\right)^4+5}\)
C= \(\frac{27-2x}{12-x}\) (x thuộc Z)
Tìm giá trị nhỏ nhất của biểu thức :\(P=\left|X-2\right|+\left|-2Y+8\right|+2018\)
Ta có : \(\hept{\begin{cases}\left|x-2\right|\ge0\\\left|-2y+8\right|\ge0\end{cases}}\)
\(\Rightarrow P=\left|x-2\right|+\left|-2y+8\right|+2018\)đạt GTNN
\(\Leftrightarrow\)\(\hept{\begin{cases}\left|x-2\right|=0\\\left|-2y+8\right|=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x-2=0\\-2y+8=0\end{cases}}\Rightarrow\hept{\begin{cases}x=2\\-2y=-8\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=2\\y=4\end{cases}}\)
Vậy P đạt GTNN <=> x = 2 ; y = 4
*<=> : khi và chỉ khi
Quên, sót :
- Cái đoạn suy ra P = ... đạt GTNN bạn sửa thành : P = ... đạt GTNN bằng 2018 <=> ...
- Bổ sung câu kết : Vậy P đạt GTNN bằng 2018 <=> x =2 ; y = 4 nhé
Tìm giá trị nhỏ nhất của biểu thức:
\(P=\left(|x-10|+5\right)^2+2|y-3|+2018\)
\(P=\left(|x-10|+5\right)^2+2|y-3|+2018\)
VÌ \(\left(|x-10|+5\right)^2\ge0 \left(1\right)\)
\(2|y-3|\ge0 \left(2\right)\)
TỪ (1);(2) \(\Rightarrow P=\left(|x-10|+5\right)^2+2|y-3|+2018\ge2018\)
DẤU "=" XẢY RA \(\Leftrightarrow\hept{\begin{cases}\left(|x-10|+5\right)^2=0\\2|y-3|=0\end{cases}\Leftrightarrow}\hept{\begin{cases}|x-10|=-5\\y-3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=5\\y=3\end{cases}}\)
VẬY Pmax=2018\(\Leftrightarrow\)x = 5 và y = 3
Giá trị tuyệt đối sao bằng âm được hả bạn???
Có: |x - 10| lớn hơn hoặc bằng 0 => |x - 10| + 5 lớn hơn hoặc bằng 5 => (|x - 10| + 5)2 lớn hơn hoặc bằn 25. Dấu "=" xảy ra khi x = 10 (*)
Cũng có: |y - 3| lớn hơn hoặc bằng 0 => 2|y - 3| lớn hơn hoặc bằng 0. Dấu "=" xảy ra khi y = 3 (**)
Từ (*) và (**) => Pmin = 25 + 0 + 2018 = 2043
a) Rút gọn rồi tìm giá trị của x để biểu thức: \(\frac{x^2}{x-2}.\left(\frac{x^2+4}{x}-4\right)+3\) có giá trị nhỏ nhất. Tìm giá trị nhỏ nhất đó.
b) Rút gọn rồi tìm giá trị của x để biểu thức: \(\frac{^{x^2}}{x-2}.\left(1-\frac{^{x^2}}{x+2}\right)-\frac{x^2+6x+4}{x}\)có giá trị lớn nhất. Tìm giá trị lớn nhất đo.
Tìm giá trị nhỏ nhất của biểu thức và giá trị tương ứng của x,y
\(A=\left(3x+4\right)^{2018}+\left|3y+5\right|+2018^0\\\)
\(B=2\left|x-100\right|+\left|2x+1\right|\)
\(C=\left|x-y-5\right|+2018.\left(y-3\right)^{2020}+2019\)
\(D=\left|2x+2018\right|+2\left|x-1\right|\)
Cho biểu thức: \(M=\left(\frac{\left(a-1\right)^2}{31+\left(a-1\right)^2}-\frac{1-2a^2+4a}{a^3-1}+\frac{1}{a-1}\right):\frac{a^3+4a}{4a^2}\)
a) Rút gọn M
b) Tìm a để M > 0
c) Tìm giá trị của a để biểu thức M đạt giá trị lớn nhất. Tìm giá trị nhỏ nhất đó
1. Tìm giá trị lớn nhất của biểu thức sau: \(H=\frac{1}{\left|8x+16\right|+1}\)
2. Tìm giá trị nhỏ nhất của biểu thức sau:\(K=\frac{1}{-\left|x-3\right|-1}\)
3. Tìm giá trị nhỏ nhất của biểu thức sau:\(L=\frac{1}{-\left|2x-2\right|-1}\)
Giải mau mau giùm mink nhé các bn, thanks nhiều
Đáy lớn là
26 + 8 = 34 M
chIỀU CAO là
26 - 6 = 20 m
Diện tích thửa ruộng là
{ 34 + 26 } x 20 : 2 = 800 m2
Đáp số 800 m2
1.Để H đạt GTLN
=>|8x+16|+1 đạt giá trị dương nhỏ nhất
=>|8x+16|+1=1
=>MaxH=1
Dấu "=" xảy ra khi x=-2
Vậy...
1.Để H đạt GTLN
=>|8x+16|+1 đạt giá trị dương nhỏ nhất
=>|8x+16|+1=1
=>MaxH=1
Dấu "=" xảy ra khi x=-2
Vậy...
Tìm giá trị nhỏ nhất của biểu thức: (x+2)^2 + (y-3)^2 + 1
tìm giá trị lớn nhất của biểu thức: \(\frac{1}{\left(x-2\right)^2+2}\)
1 )Vì \(\left(x+2\right)^2\ge0;\left(y-3\right)^2\ge0\)
\(\Rightarrow\left(x+2\right)^2+\left(y-3\right)^2\ge0\)
\(\Rightarrow\left(x+2\right)^2+\left(y-3\right)^2+1\ge1\)
Dấu "=: xảy ra <=> \(\orbr{\begin{cases}\left(x+2\right)^2=0\\\left(y-3\right)^2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-2\\y=3\end{cases}}}\)
Vậy ........
2 ) \(\frac{1}{\left(x-2\right)^2+2}\ge\frac{1}{2}\)
Dấu "=" xảy ra <=> x = 2
Vậy ..........