tim nghiem nguyen duong cua pt yx^2+yx+y=1
tim nghiem nguyen duong cua pt 2^m!+6^n=10^n
1. Tim nghiem nguyen cua pt:
\(\sqrt{9x^2+16x+96}=3x-16y-24\)
2. Tim nghiem nguyen duong:
\(2+\sqrt{x+\frac{1}{4}+\sqrt{x+\frac{1}{4}}}=4\)
Không biết bạn có gõ đúng đề cả 2 câu không ? Câu 2 không có nghiệm nguyên dương nhé bạn. Bạn xem lại.
có đúng đề không bạn
Tim nghiem nguyen duong cua pt:\(\frac{xy}{z}+\frac{yz}{x}+\frac{zx}{y}=3\)
ap dung bdt co si ta co:\(\frac{xy}{z}+\frac{yz}{x}+\frac{zx}{y}>=3\sqrt[3]{xyz}\)
=>\(3>=3\sqrt[3]{xyz}\)
=>\(1>=\sqrt[3]{xyz}\)
=>\(1>=xyz\)
dau bang xay ra khi \(\frac{xy}{z}=\frac{yz}{x}=\frac{xz}{y}\)=>x=y=z=1
vay x=y=z=1
Tim nghiem nguyen cua pt sau : 3^x+171=y^2
tim gia tri cua a de nghiem cua pt
\(\frac{a^2-4}{2x-5}=2+a\) la so nguyen duong nhung nho hon 2
ta có:\(\frac{a^2-4}{2x-5}=2+a\)
\(ĐKXĐ:x\ne\frac{5}{2}\)
\(\Rightarrow\left(2+a\right).\left(2x-5\right)=a^2-4\)
\(\Rightarrow2x-5=\frac{a^2-4}{a+2}=a-2\)
\(\Leftrightarrow x=\frac{a-3}{2}\)
vì x là số nguyên dương nhỏ hơn 2 nên x=1
\(\Leftrightarrow1=\frac{a-3}{2}\)
\(\Leftrightarrow a-3=2\)
\(\Leftrightarrow a=5\)
tim nghiem nguyen duong cua phuong trinh x+y+z=xyz
tim nghiem nguyen cua pt 4x+10y=m^2-1
tim nghiem nguyen duong cua phuong trinh \(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{7}\)
Lời giải:
Ta có: \(\frac{1}{x}+\frac{1}{y}=\frac{1}{7}\Leftrightarrow \frac{x+y}{xy}=\frac{1}{7}\)
\(\Rightarrow 7(x+y)=xy\)
\(\Leftrightarrow (xy-7x)-7y=0\)
\(\Leftrightarrow x(y-7)-7(y-7)=49\)
\(\Leftrightarrow (x-7)(y-7)=49(*)\)
Vì $x,y$ đều là số nguyên dương nên \(x-7,y-7\geq -6\)
Do đó từ $(*)$ ta có xét những TH sau:
TH1: \(\left\{\begin{matrix} x-7=1\\ y-7=49\end{matrix}\right.\Rightarrow \left\{\begin{matrix} x=8\\ y=56\end{matrix}\right.\) (t/m)
TH2: \(\left\{\begin{matrix} x-7=49\\ y-7=1\end{matrix}\right.\Rightarrow x=56; y=8\) (t/m)
TH3: \(\left\{\begin{matrix} x-7=7\\ y-7=7\end{matrix}\right.\Rightarrow x=y=14\) (t/m)
Vậy ......
\(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{7}\Rightarrow\dfrac{1}{x}=\dfrac{y-7}{7y}\Rightarrow x=\dfrac{7y}{y-7}=7+\dfrac{49}{y-7}\)
Để x, y nguyên \(\Rightarrow49⋮y-7\Rightarrow y-7=Ư\left(49\right)=\left\{-49;-7;-1;1;7;49\right\}\)
\(y-7=-49\Rightarrow y=-42< 0\) (loại)
\(y-7=-7\Rightarrow y=0\) (loại)
\(y-7=-1\Rightarrow y=6\Rightarrow x=-42< 0\) (loại)
\(y-7=1\Rightarrow y=8\Rightarrow x=56\)
\(y-7=7\Rightarrow y=14\Rightarrow x=14\)
\(y-7=49\Rightarrow y=56\Rightarrow x=8\)
Vậy pt có 3 cặp nghiệm nguyên dương \(\left(x;y\right)=\left(56;8\right);\left(14;14\right);\left(8;56\right)\)
Tim nghiem nguyen cua pt \(x^2+y^2+xy=x^2y^2\)
Có nhiều cách để làm bài này nhé!
Áp dụng bất đẳng thức $x^2+y^2\geq 2xy$ nên ta có $x^2+y^2+xy \geq 3xy$
Mà $x^2+y^2+xy=x^2y^2 \geq 0$ nên suy ra $x^2y^2+3xy\leq 0 \iff -3\leq xy \leq 0$
Vì $x,y$ nguyên nên $xy$ nguyên, vậy nên $xy \in \left \{ -3,-2,-1,0\right \}$
Trường hợp $xy=-3 $ ta tìm được các nghiệm $(-1,3),(3,-1),(-3,1),(1,-3)$
Trường hợp $xy=-2$ ta tìm được các nghiệm $(-1,2),(2,-1),(1,-2),(-2,1)$
Trường hợp $xy=-1$ ta tìm được các nghiệm $(-1,1),(1,-1)$
Trường hợp $xy=0$ ta tìm được nghiệm $(0,0)$
Thử lại thì thấy chỉ có các nghiệm $(0,0),(1,-1),(-1,1)$ thỏa mãn và đó là các nghiệm nguyên cần tìm
PT ban đầu tương đương
$x^2(y^2-1)-yx-y^2=0$
Xét $\Delta = 4y^4-3y^2$
=> $\sqrt{\Delta} = y\sqrt{4y^2-3}$
Nếu y=0 thì x=0
Xét TH y khác 0
Pt nhận nghiệm nguyên nên $sqrt{\Delta}$ nguyên
mà y nguyên rồi nên $4y^2-3$ phải là số chính phương
Đặt $4y^2-3=k^2$
Tới đây suy ra được y=1 hoặc y=-1
Thay vào pt ban đầu tìm được x tương ứng.
Vậy pt có 3 nghiệm (x;y)=(0;0);(-1;1);(1;-1)
x^2+xy+y^2=x^2y^2
<> (1 - y^2).x^2 + xy + y^2 = 0
+ nếu 1 - y^2 = 0 <> y = +-1 thay vào => x => nghiệm (1,-1) và (-1,1)
+ nếu 1 - y^2 # 0 xem như pt bậc 2 ẩn x ta có
denta = y^2 - 4y^2.(1 - y^2) = y^2.(1 - 4 + 4y^2) = (4.y^2 - 3).y^2
- nếu y = 0 => x = 0
- nếu y # 0 ta có 4y^2 - 3 phải là số chính phương
<> 4y^2 - 3 = n^2
<> 4y^2 - n^2 = 3
<> (2y - n)(2y + n) =3
=> ta có các hệ sau
+ 2y - n = 3 và 2y + n =1
<> y = 1 và n =1 loại
+ 2y - n =1 và 2y + n = 3
<> y = n =1 loại
+ 2y - n = -3 và 2y + n = -1
<> y = -1 và n = 1 loại
+ 2y - n = -1 và 2y + n = -3
tương tự loại
Vậy có 3 nghiệm (0,0) (-1,1) và (1,-1)