Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Tobot Z
Xem chi tiết
Đặng Viết Thái
26 tháng 3 2019 lúc 12:33

Vì 2n+1 là số chính phương lẻ nên

2n+1≡1(mod8)⇒2n⋮8⇒n⋮4

Do đó n+1 cũng là số lẻ, suy ra

n+1≡1(mod8)⇒n⋮8

Lại có

(n+1)+(2n+1)=3n+2

Ta thấy

3n+2≡2(mod3)

Suy ra

(n+1)+(2n+1)≡2(mod3)

Mà n+1 và 2n+1 là các số chính phương lẻ nên

n+1≡2n+1≡1(mod3)

Do đó: n⋮3

Vậy ta có đpcm.

Aug.21
26 tháng 3 2019 lúc 12:35

Chứng minh rằng nếu n là số tự nhiên sao cho n + 1 và 2n + 1 đều là các số chính phương thì n là bội của 24

Vì 2 n - 1 là số chính phương . Mà 2n - 1 lẻ

⇒2n+1=1(mod8)⇒2n+1=1(mod8)

=> n ⋮⋮ 4

=> n chẵn

=> n+1 cũng là số lẻ

⇒n+1=1(mod8)⇒n+1=1(mod8)

=> n ⋮⋮ 8

Mặt khác :

3n+2=2(mod3)3n+2=2(mod3)

⇒(n+1)+(2n+1)=2(mod3)⇒(n+1)+(2n+1)=2(mod3)

Mà n+1 và 2n+1 là các số chính phương lẻ

⇒n+1=2n+1=1(mod3)⇒n+1=2n+1=1(mod3)

=> n chia hết cho 3

Mà ( 3 ; 8 ) = 1

=> n chia hết cho 24

 Bạn tham khảo: !!!

TF girls
26 tháng 3 2019 lúc 12:43

Vì 2n-1 là số chính phương. Mà 2n-1 lẻ

\(\Rightarrow2n+1=1\left(mod8\right)\)

\(\Rightarrow n⋮4\)

\(\Rightarrow\)n chẵn

\(\Rightarrow n+1\)lẻ

\(\Rightarrow n+1=1\left(mod8\right)\)

\(\Rightarrow n⋮8\)

  Mặt khác

\(3n+2=2\left(mod3\right)\)

\(\Rightarrow\left(n+1\right)+\left(2n+1\right)=2\left(mod3\right)\)

Mà n+1 và 2n+1 đều là các số chính phương lẻ

\(\Rightarrow n\text{+}1=2n\text{+}1=1\left(mod3\right)\)

\(\Rightarrow n⋮3\)

    Mà (3:8)=1

\(\Rightarrow n⋮24\)

cô bé thì sao nào 992003
Xem chi tiết
Hoàng Lê Bảo Ngọc
6 tháng 7 2016 lúc 23:54

Giả sử \(n+1=a^2\) ; \(2n+1=b^2\) \(\left(a,b\in N^{\text{*}}\right)\)

Ta có b là số lẻ \(\Leftrightarrow b=2m+1\Rightarrow b^2=4m\left(m+1\right)+1\Rightarrow n=2m\left(m+1\right)\)

=> n chẵn => n + 1 lẻ => a lẻ => a = 2k+1 =>  \(n+1=\left(2k+1\right)^2=4k\left(k+1\right)+1\Rightarrow n=4k\left(k+1\right)⋮8\)

Vậy n chia hết cho 8

Ta có : \(a^2+b^2=3n+2\equiv2\)(mod 3)

Mặt khác : \(b^2\)chia 3 dư 0 hoặc 1 , \(a^2\)chia 3 dư 0 hoặc 1

=> Để \(a^2+b^2\equiv2\)(mod 3) thì \(a^2\equiv1\)(mod 3) và \(b^2\equiv1\)(mod 3)

\(\Rightarrow b^2-a^2\)chia hết cho 3

Ta có : n = (2n + 1) - (n + 1) = \(b^2-a^2\)chia hết cho 3

Như vậy  \(n⋮3,n⋮8\) mà (3,8) = 1 

=> \(n⋮24\)

nguyen minh duc
7 tháng 7 2016 lúc 10:17

bằng 1 nhé100% là đúng

k cho mình nha 

Bùi Văn Minh
Xem chi tiết
Nguyễn Thanh Thủy
Xem chi tiết
Thanh Nguyen Phuc
14 tháng 3 2021 lúc 9:06

2n+1=a^2 (1), 3n+1=b^2 (2)

Từ (1) suy ra a lẻ, đặt a=2k+1 suy ra 2n+1=4k^2+4k+1, n=2k^2+2k, suy ra n chẵn

suy ra 3n+1 lẻ, từ 2 suy ra b lẻ. Đặt b=2p+1

(1)+(2) ta có 5n+2=4k^2+4k+1+4p^2+4p+1, suy ra 5n=4k(k+1)+4p(p+1)

suy ra 5n chia hết cho 8, suy ra n chia hết cho 8

Ta cần chứng minh n chia hết cho 5

Số chính phương có các tận cùng là 0,1,4,5,6,9

Lần lượt xét các trường hợp n=5q+1, 5q+2, 5q+3,5q+4, đều không thỏa mãn 2n+1, 3n+1 là số chính phương. Vậy n phải chia hêts cho 5

Mà 5 và 8 nguyên tố cùng nhau, nên n chia hết cho 40 (đpcm)

Khách vãng lai đã xóa
Vũ Tiến Dũng
13 tháng 3 2021 lúc 21:02
Chịu lớp 8 thì thôi
Khách vãng lai đã xóa
AhJin
Xem chi tiết
PRO chơi hệ cung
2 tháng 4 2021 lúc 6:03

a là số tự nhiên > 0. giả sử có m,n > 0 ∈ Z để: 
2a + 1 = n^2 (1) 
3a +1 = m^2 (2) 
từ (1) => n lẻ, đặt: n = 2k+1, ta được: 
2a + 1 = 4k^2 + 4k + 1 = 4k(k+1) + 1 
=> a = 2k(k+1) 
vậy a chẵn . 
a chẳn => (3a +1) là số lẻ và từ (2) => m lẻ, đặt m = 2p + 1 
(1) + (2) được: 
5a + 2 = 4k(k+1) + 1 + 4p(p+1) + 1 
=> 5a = 4k(k+1) + 4p(p+1) 
mà 4k(k+1) và 4p(p+1) đều chia hết cho 8 => 5a chia hết cho 8 => a chia hết cho 8 

ta cần chứng minh a chia hết cho 5: 
chú ý: số chính phương chỉ có các chữ số tận cùng là; 0,1,4,5,6,9 
xét các trường hợp: 
a = 5q + 1=> n^2 = 2a+1 = 10q + 3 có chữ số tận cùng là 3 (vô lý) 

a =5q +2 => m^2 = 3a+1= 15q + 7 có chữ số tận cùng là 7 (vô lý) 
(vì a chẵn => q chẵn 15q tận cùng là 0 => 15q + 7 tận cùng là 7) 

a = 5q +3 => n^2 = 2a +1 = 10a + 7 có chữ số tận cùng là 7 (vô lý) 

a = 5q + 4 => m^2 = 3a + 1 = 15q + 13 có chữ số tận cùng là 3 (vô lý) 

=> a chia hết cho 5 

5,8 nguyên tố cùng nhau => a chia hết cho 5.8 = 40 
hay : a là bội số của 40

Khách vãng lai đã xóa
Hoàng Hoa Huệ
Xem chi tiết
Anh
Xem chi tiết
Trần Nguyễn Minh Ngọc
Xem chi tiết
Trần Linh Chi
15 tháng 1 2015 lúc 20:23

Ta có: 3x-4y 

          = x-6y+6y-+4y

          = 3.(x+2y)-10y

Mà: 10 chia hết cho 5 => 10y chia hết cho 5

       3 không chia hết cho 5 => 9x+2y0 chia hết cho 5 (1)

Ta có: x+2y

          =x+2y+5x-10y-5x+10y

          = 6x-8y-5.(x+2y)

Mà: 5 chia hết cho 5 => 5(x+2y) chia hết cho 5

      2 không chia hết cho 5 => (3x-4y) chia hết cho 5 (2)

Từ (1) và (2) => x+2y <=> 3x -4y

Vậy ; x+2y <=> 3x-4y

 

Nguyễn Minh
5 tháng 10 2015 lúc 20:58

ban gioi wa.cam on

 

Trần Tiến Đạt
Xem chi tiết
Ħäńᾑïě🧡♏
12 tháng 7 2021 lúc 20:38

Tham khảo:

,m. /kl;
14 tháng 12 2023 lúc 21:07

Nhận xét rằng một số nguyên dương không thể chia 33 dư 22 nên nếu nn không chia hết cho 33 thì một trong hai số n+1,2n+1n+1,2n+1 có một số chia 3 dư 2 nên vô lý. Vậy n⋮3n⋮3. (1)(1)

Có 2n+12n+1 là một chính phương lẻ nên 2n+12n+1 chia 88 dư 11 nên nn chẵn nên n+1n+1 cũng là số chính phương lẻ nên n+1n+1 chia 88 dư 11 nên nn chia hết cho 88. (2)(2)

Từ (1),(2)(1),(2) có n⋮24n⋮24.

truong nhat  linh
Xem chi tiết