Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đào Thị Thu Thảo
Xem chi tiết
nguyendomaingoc
Xem chi tiết
Nguyễn Ngọc Quý
20 tháng 11 2015 lúc 20:16

P là số NT lớn hơn 3 do đó p lẻ 

Nên p + 3 chẵn vậy p + 3 là hợp số

Vậy p ; p + 2 ; p + 3 không thể đồng thời là 3 số NT (đpcm)     

Nguyễn Bá Đô
Xem chi tiết
Anh Thư Nguyễn
Xem chi tiết
kaitovskudo
28 tháng 10 2015 lúc 10:11

Vì p nguyên tố lớn hơn 3 => p chia 3 dư 1 hoặc 2

TH1: p=3k+1(k thuộc N)

=>p+2=3(k+1)

=>p+2 chia hết cho 3

Mà p+2 nguyên tố => p\(\ne\) 3k+1

TH2: p=3x+2(\(x\in\)N)

=>p+4=3(x+2)

=> p+4 chia hết cho 3

Mà p+4 nguyên tố=>p\(\ne\)3x+2

Vậy p nguyên tố lớn hơn 3 thì p,p+2,p+4 ko cùng nguyên tố

Trần Hương Giang
Xem chi tiết
Trương Việt Vỹ
24 tháng 10 2015 lúc 19:39

Nếu p=3k+1

=>p+4=3k+1+4=3k+5

=>p+2=3k+1+2=3k+3 chia hết cho 3=>không thể đồng thời là số nguyên tố.

Nếu p=3k+2

=>p+2=3k+2+2=3k+4

=>p+4=3k+2+4=3k+6 chia hết cho 3 => không thể đồng thời là số nguyên tố 

Nguyễn Bình
Xem chi tiết
Nguyễn Bình
10 tháng 1 2024 lúc 7:48

Cảm ơn cô

Bài 1:

Vì p là số nguyên tố lớn hơn 3 nên p là số lẻ

vậy p + 1 và p -  1 là hai số chẵn.

Mà p + 1 - (p - 1) = 2 nên p + 1 và p - 1 là hai số chẵn liên tiếp.

đặt p - 1 = 2k thì p + 1 = 2k + 2 (k \(\in\) N*)

A = (p + 1).(p - 1) = (2k + 2).2k = 2.(k + 1).2k = 4.k.(k +1) 

Vì k và k + 1 là hai số tự nhiên liên tiếp nên chắc chẵn phải có một số chia hết cho 2.

⇒ 4.k.(k + 1) ⋮ 8 

⇒ A = (p + 1).(p - 1) ⋮ 8 (1)

Vì p là số nguyên tố lớn hơn 3 nên p có dạng:

   p = 3k + 1; hoặc p = 3k + 2

Xét trường hợp p = 3k + 1 ta có:

  p - 1 = 3k + 1  - 1  = 3k ⋮ 3

⇒ A = (p + 1).(p - 1) ⋮ 3  (2)

Từ (1) và (2) ta có:

A ⋮ 3; 8  ⇒ A \(\in\) BC(3; 8)

3 = 3; 8 = 23; ⇒ BCNN(3; 8) = 23.3 = 24

⇒ A \(\in\) B(24) ⇒ A ⋮ 24 (*)

Xét trường hợp p = 3k + 2 ta có

p + 1 = 3k + 2 + 1  = 3k + 3 = 3.(k + 1) ⋮ 3 (3)

Từ (1) và (3) ta có: 

A = (p + 1).(p - 1) ⋮ 3; 8 ⇒ A \(\in\) BC(3; 8)

3 = 3; 8 = 23 ⇒ BCNN(3; 8) = 23.3 = 24 

⇒ A \(\in\) BC(24) ⇒ A \(⋮\) 24 (**)

Kết hợp (*) và(**) ta có

\(⋮\) 24 (đpcm)

 

 

  

 

 

Bài 2:

P = 10p + 1 và p là số nguyên tố lớn hơn 3 chứng minh 5p + 1 là hợp số

Ta có vì p là số nguyên tố lớn hơn 3 nên p là số lẻ

⇒ p = 2k + 1 (k \(\in\) N*)

ta có: \(\left\{{}\begin{matrix}p=2k+1\\10p+1=10.\left(2k+1\right)+1\end{matrix}\right.\)

⇒ \(\left\{{}\begin{matrix}5p=5.\left(2k+1\right)\\10p+1=20k+11\end{matrix}\right.\)

\(\left\{{}\begin{matrix}5p=10k+5\\10p+1=20k+11\end{matrix}\right.\)

⇒ 10p + 1 - 5p =  20k + 11 - (10k + 5)

⇒ 5p + 1 = 20k + 11  - 10k - 5

⇒ 5p + 1  = 10k + 6 

⇒ 5p + 1  = 2.(5k + 3)

⇒ 5p + 1 ⋮ 1; 1; (5k + 3) 

⇒ 5p + 1 là hợp số (đpcm)

 

 

Lê Thị Trà My
Xem chi tiết
shitbo
16 tháng 11 2020 lúc 21:08

e có 2 chia hết cho d; 2n+3 lẻ nên (2n+3,4n+8)=1

còn n+1-n=1 nên (n,n+1)=1

Khách vãng lai đã xóa
Đào Phương Linh
Xem chi tiết
Flower in Tree
21 tháng 12 2021 lúc 8:50

Gọi \(d=UCLN\left(2n+3,4n+8\right)\)

Suy ra \(2n+3\)chia hết cho d và \(4n+8\)chia hết cho d

Ta có :

\(2n+3\)chia hết cho d \(=2.\left(2n+3\right)\text{⋮}d\)nên 

Vì \(4n+8\text{⋮}d\)và \(4n+6\text{⋮}d\)nên 

\(\left(4n+8\right)-\left(4n+6\right)\text{⋮}d=2\text{⋮}d=d..\left\{1;2\right\}\)

Vì \(2n+3\)là số lẻ nên \(d=2\)

Vậy đó

Khách vãng lai đã xóa
Nguyễn Hà Linh
Xem chi tiết

Gọi ƯCLN(2n + 3; 2n + 1) = d

\(\Rightarrow\hept{\begin{cases}2n+3⋮d\\2n+1⋮d\end{cases}}\)          

=> 2n + 3 - (2n + 1) \(⋮\)d

=> 2n + 3 - 2n - 1 \(⋮\)d

=> 2 \(⋮\)d          => d  ∈ {1;2}

Do 2n + 1 lẻ => d lẻ => d = 1

Vậy  ∀ x  ∈ N thì 2n + 3 và 2n + 1 là 2 số nguyên tố cùng nhau

Khách vãng lai đã xóa