Tính giá trị của
F(x) = x6 - 2019x5 + 2019x4 - 2019x3 + 2019x2 - 2019x +1
tại x = 2019
1
Tính giá trị đa thức
f(x)=-x+2019x2018-2019x207+.....-2019x2-2019x+2019
tại x=2018
Sửa đề nha :
f(x) = -x2019 + 2019x2018 - 2019x2017+...- 2019x2 + 2019x + 2019
Ta có : 2019 = 2018 + 1 = x + 1
=> f(x) = -x2019 + ( x + 1 )x2018 - ( x + 1 )x2017 + ... - ( x + 1 )x2 + ( x + 1 )x + 2019
= -x2019 + x2019 + x2018 - x2018 - x2017 + ... - x3 - x2 + x2 + x + 2019
= x + 2019
= 4037
Study well ! >_<
Bạn Hồng Anh làm sai rồi Ở -2019x (dấu trừ sao bạn đổi thành cộng ??)
Kq =1 nha (-2018+2019)
Hok tốt
Cho x= 2019. Tính giá trị của biểu thức:
E = x^2019 - 2019x^2018 + 2019x^2017 - ....-2019x^2 +2019x-1
Giúp mik nhanh với, cảm ơn nhek
Thu gọn và tính giá trị biểu thức D=x^2020+2019.x^2019+2019.x^2018+...+2019x+1 tại x=2020
Ta có: \(2020=x\Rightarrow2019=x-1\)
Thay vào ta được:
\(D=x^{2020}+\left(x-1\right)^{2019}+\left(x-1\right)^{2018}+...+\left(x-1\right)x+1\)
\(D=x^{2020}+x^{2020}-x^{2019}+x^{2019}-x^{2018}+...+x^2-x+1\)
\(D=2x^{2020}-x+1\)
\(D=2\cdot2020^{2020}-2020+1\)
Bạn xem lại đề nhé
x = 2020 => 2019 = x - 1
Thế vào D ta được
D = x2020 + ( x - 1 )x2019 + ( x - 1 )x2018 + ... + ( x - 1 )x + 1
= x2020 + x2020 - x2019 + x2019 - x2018 + ... + x2 - x + 1
= 2x2020 - x + 1
= 2.20202020 - 2020 + 1
= 2.20202020 - 2019 ( chắc đề sai (: )
tính giá trị f(x)=x^6-2019x^5+2019x^4-2019x^3+2019x^2-2019x+1 tại x=2018
Ta có: x = 2018 \(\Rightarrow x+1=2019\).
\(f\left(x\right)=x^6-2019x^5+2019x^4-...-2019+1\)
\(=x^6-\left(x+1\right)x^5+\left(x+1\right)x^4-...-\left(x+1\right)x+1\)
\(=x^6-x^6-x^5+x^5+x^4-...-x^2-x+1\)
\(=-x-1=-2018-1=-2019\)
a) Tính giá trị của đa thức f(x)=x^6 - 2019x^5 + 2019x^4 - 2019x^3 + 2019x^2 - 2019x + 1 tại x=2018.
b) Cho đa thức f(x)=ax^2 + bx + c với các hệ số a, b, c thõa mãn 11a - b + 5c =0. Chứng minh rằng f(1) và f(-2) không thể cùng dấu.
thực chất phép tính này chưa được thu gọ nó giống như phsp toaasn cấp 1 vậy nó được tách nhánh ra nhưng số chúng vẫn giống nhau nên chỉ cần thu gọn đa thức này vào rồi sau đó thay x = 2018 vô là xong
a)
Có : \(f\left(x\right)=x^6-2019x^5+2019x^4-...-2019x+1\)
\(=x^6-\left(2018+1\right)x^5+\left(2018+1\right)x^4-...-\left(2018+1\right)x+1\)
\(=x^6-\left(x+1\right)x^5+\left(x+1\right)x^4-...-\left(x+1\right)x+1\)
\(=x^6-\left(x^6+x^5\right)+\left(x^5+x^4\right)-...-\left(x^2+x\right)+1\)
\(=x^6-x^6-x^5+x^5+x^4-...-x^2-x+1\)
\(=-x+1\)
- Thay \(x=2018\)vào đa thức \(f\left(x\right)\)ta được:
\(f\left(2018\right)=-2018+1=-2017\)
Vậy \(f\left(2018\right)=-2017\)
b) -\(Có\) :\(f\left(x\right)=ax^2+bx+c\)
\(\Rightarrow\hept{\begin{cases}f\left(1\right)=a.1^2+b.1+c=a+b+c\\f\left(-2\right)=a.\left(-2\right)^2+b.\left(-2\right)+c=4a-2b+c\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}3.f\left(1\right)=3\left(a+b+c\right)=3a+3b+3c\\2.f\left(-2\right)=2\left(4a-2b+c\right)=8a-4b+2c\end{cases}}\)
- Xét \(3.f\left(1\right)=3a+3b+3c\)
\(=\left(11a-8a\right)+\left(4b-b\right)+\left(5c-2c\right)\)
\(=11a-8a+4b-b+5c-c\)
\(=\left(11a-b+5c\right)-\left(8a-4a+2c\right)\)
\(=0-2.f\left(-2\right)\)
\(=-2.f\left(-2\right)\)
\(\Rightarrow3.f\left(1\right)=-2.f\left(-2\right)\)
\(\Rightarrow3.f\left(1\right),2.f\left(-2\right)\)trái dấu nhau
\(\Rightarrow f\left(1\right)\)và \(f\left(-2\right)\)không cùng dấu \(\left(đpcm\right)\)
Tính giá trị biểu thức:
\(C=x^{15}-2019x^{14}+2019^{13}-2019x^{12}+...+2019x-1\) với x = 2018
Giải bài này hộ mình với ạ. Mình cần gấp!!!
ta có: x = 2018 => 2019 = x + 1. Do đó:
\(C=x^{15}-\left(x+1\right)x^{14}+\left(x+1\right)x^{13}-\left(x+1\right)x^{12}+...+\left(x+1\right)x-1.\)
\(=x^{15}-x^{15}-x^{14}+x^{14}+x^{13}-x^{13}-x^{12}+...+x^2+x-1.\)
\(=x-1=2019-1=2018\)
Vậy C = 2018 với x = 2018.
Học tốt nhé ^3^
\(Ta \) \(có :\)
\(x = 2018\)\(\Leftrightarrow\)\(x + 1 = 2019\)
\(Thay \) \(x + 1 = 2019\)\(vào \) \(C , ta \) \(được :\)
\(C = x\)\(15\)\(- ( x + 1 ).x\)\(14\)\(+ ( x + 1 ).x\)\(13\) \(- ( x + 1 ).x\)\(12\) \(+ ...+ ( x + 1 ).x - 1\)
\(C = x\)\(15\)\(- x\)\(15\)\(- x\)\(14\) \(+ x\)\(14\) \(+ x\)\(13\)\(- x\)\(13\)\(- x\)\(12\)\(+ ... + x^2 + x - 1\)
\(C = x - 1\)
\(Thay \) \(x = 2018\) \(vào \) \(C\) \(, ta \) \(được :\)
\(C = 2018 - 1 = 2017\)
Cho A = \(x^{19}\)- 2019\(x^{18}\)+ 2019\(x^{17}\)-....+2019x - 1
Tính giá trị của biểu thức A biết x = 2018
Tính giá trị biểu thức A với x = 2018
A= x14 - 2019x13 + 2019x12 - 2019x11 +...+ 2019x2 - 2019x + 2019
Các bạn giúp mình nhé
Với x=2018 thì 2019=x+1
\(\Rightarrow A=x^{14}-\left(x+1\right)x^{13}+\left(x+1\right)x^{12}-\left(x+1\right)x^{11}+...+\left(x+1\right)x^2-\left(x+1\right)x+x+1\)
\(\Rightarrow A=x^{14}-x^{14}-x^{13}+x^{13}+x^{12}-x^{12}-x^{11}+...+x^3+x^2-x^2-x+x+1\)
\(\Rightarrow A=1\)
Tính giá trị của đa thức:
x5 - 2019x4 + 2019x3 - 2019x2 + 2019x - 2019. Tại x = 2018
\(x=2018\Rightarrow2019=x+1\)
\(x^5-\left(x+1\right)x^4+\left(x+1\right)x^3-\left(x+1\right)x^2+\left(x+1\right)x-\left(x+1\right)\)
\(=x^5-x^5-x^4+x^4+x^3-x^3-x^2+x^2+x-x-1\)
\(=-1\)