Cho f(x) =\(\left(m-2\right)x^2+2\left(2m-3\right)x+5m-6\) ( m là tham số )
1, Tìm m để bất phương trình f(x) \(\le\) 0 luôn đúng với mọi x thuộc R
Bài 1: Tìm m để \(f\left(x\right)=mx^2-2\left(m-1\right)x+4m\) luôn luôn âm.
Bài 2: Tìm tất cả các giá trị của tham số m để bất phương trình \(\dfrac{-x^2+2x-5}{x^2-mx+1}\le0\)nghiệm đúng với mọi \(x\in R\)
Bài 3: Cho hàm số \(f\left(x\right)=-x^2-2\left(m-1\right)x+2m-1\). Tìm tất cả các giá trị của tham số m để \(f\left(x\right)>0,\forall x\in\left(0;1\right)\)
1.
Nếu \(m=0\), \(f\left(x\right)=2x\)
\(\Rightarrow m=0\) không thỏa mãn
Nếu \(x\ne0\)
Yêu cầu bài toán thỏa mãn khi \(\left\{{}\begin{matrix}m< 0\\\Delta'=\left(m-1\right)^2-4m^2< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< 0\\\left[{}\begin{matrix}m>1\\m< -\dfrac{1}{3}\end{matrix}\right.\end{matrix}\right.\Leftrightarrow m< -\dfrac{1}{3}\)
2.
\(\dfrac{-x^2+2x-5}{x^2-mx+1}\le0\forall x\)
\(\Leftrightarrow\dfrac{-\left(x-1\right)^2-4}{x^2-mx+1}\le0\forall x\)
\(\Leftrightarrow x^2-mx+1>0\forall x\)
\(\Leftrightarrow\Delta=m^2-4< 0\Leftrightarrow-2< m< 2\)
Kết luận: \(-2< m< 2\)
1.Cho \(f\left(x\right)=mx^2+\left(4m-3\right)x+4m-6\). Tìm m để bất phương trình \(f\left(x\right)\ge0\) đúng với \(\forall x\in\left(-1;2\right)\)
2. Cho bất phương trình \(x^2-4x+2|x-3|-m< 0\). Tìm m để bất phương trình đã cho đúng với \(\forall x\in\left[1;4\right]\)
a) Tìm tất cả các giá trị của tham số m để \(g\left(x\right)=4mx^2-4\left(m-1\right)x+m-3\) luôn luôn âm với mọi x thuộc R
b) Tìm tất cả các giá trị của tham số m để \(f\left(x\right)=x^2-2\left(m+2\right)x-2m^2+3m+4\) không âm với mọi m thuộc R
c) Bất pt \(x^2+2mx+m^2-5m+6>0\) ( m là tham số thực) có nghiệm với mọi x thuộc R khi \(m\in\left(-\infty;\dfrac{a}{b}\right)\) với \(a,b\in Z\) và \(\dfrac{a}{b}\) là phân số tối giản. Tính giá trị biểu thức a+2b
Cho bât phương trình \(2\sqrt{\left(x+1\right)\left(3-x\right)}\le x^2-2x+2m-9\). Tìm các giá trị của tham số m để bất phương trình nghiệm đứng với \(\forall\) x thuộc [-1;3]
1.Cho phương trình: \(x^2-2\left(m-1\right)+2m-5=0\) (m là tham số). Chứng minh phương trình luôn có hai nghiệm phân biệt x1;x2 với mọi m. Tìm m để các nghiệm đó thỏa mãn hệ thức:
\(\left(x_1^2-2mx_1-x_2+2m-3\right)\left(x^2_2-2mx_2-x_1+2m-3\right)=19\)
Tìm m để bất phương trình \(\sqrt{\left(x+5\right)\left(3-x\right)}\le x^2+2x+m\) đúng với mọi x thuộc [-5; 3]
cho f(x)=\(x^2+2\left(m+1\right)x+m+3\),với m là tham số. Tìm m để bất phương trình \(f\left(x\right)\ge0\)có nghiệm với mọi \(x\inℝ\)
\(f\left(x\right)=x^2+2\left(m+1\right)x+m+3\)
Để \(f\left(x\right)\ge0\)với mọi \(x\inℝ\)thì:
\(\hept{\begin{cases}a=1>0\\\Delta'=\left(m+1\right)^2-\left(m+3\right)\ge0\end{cases}}\Leftrightarrow m^2+m-2\ge0\)
\(\Leftrightarrow\left(m+2\right)\left(m-1\right)\ge0\)
\(\Leftrightarrow\orbr{\begin{cases}m\ge1\\m\le-2\end{cases}}\).
Cho biểu thức $f\left( x \right)=\dfrac{1}{3}{{x}^{3}}+\left( m-1 \right){{x}^{2}}-\left( 2m-10 \right)x-1$ với $m$ là tham số thực. Tìm tất cả các giá trị của $m$ để ${f}'\left( x \right)>0$ $\forall x\in \mathbb{R}$.