CMR
1/50 +1/51 +1/52+...+1/98+1/99>1/2
So sánh
1/11+1/12+...+1/19+1/20 với 1/2
1/2+1/12+1/30+...+1/9120+1/9506+1/9900. / 50-50/51-51/52-...-97/98-98/99-99/100
1/50 +1/51 +1/52+...+1/98+1/99>1/2
So sánh
1/11+1/12+...+1/19+1/20 với 1/2
cho A=1/11+1/12+1/13+1/14+...+1/50
so sánh A với 1/2
cho B=1/50+1/51+1/52+...+1/98+1/99
chứng minh rằng b <1/2
cho C=1/10+1/11+1/12+...+1/99+1/100
chứng tỏ C >1
a, Ta có: \(A=\frac{1}{11}+\frac{1}{12}+...+\frac{1}{50}=\left(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{30}\right)+\left(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{60}\right)\)
Nhận xét: \(\frac{1}{11}+\frac{1}{12}+....+\frac{1}{30}>\frac{1}{30}+\frac{1}{30}+...+\frac{1}{30}=\frac{20}{30}=\frac{2}{3}\)
\(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{60}>\frac{1}{60}+\frac{1}{60}+...+\frac{1}{60}=\frac{20}{60}=\frac{1}{3}\)
\(\Rightarrow A>\frac{2}{3}+\frac{1}{3}=1>\frac{1}{2}\)
Vậy A > 1/2
b, Ta có: \(\frac{1}{50}>\frac{1}{100};\frac{1}{51}>\frac{1}{100};........;\frac{1}{99}>\frac{1}{100}\)
\(\Rightarrow B>\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}=\frac{50}{100}=\frac{1}{2}\)
Vậy B > 1/2
c, Ta có: \(C=\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+...+\frac{1}{100}=\frac{1}{10}+\left(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{100}\right)\)
Nhận xét: \(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{100}>\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}=\frac{90}{100}=\frac{9}{10}\)
\(\Rightarrow C>\frac{1}{10}+\frac{9}{10}=\frac{10}{10}=1\)
Vậy C > 1
Cho tổng S = 1/50 + 1/51 + 1/52 + ... + 1/98 + 1/99. Chứng tỏ S > 1/2
Tổng S có 50 phân số
=> S > 1/100 + 1/100 + 1/100 +...+ 1/100 (50 phân số) => S > 1/2.
Vậy S > 1/2
Tổng S có 50 phân số
=> S > 1/100 + 1/100 + 1/100 +...+ 1/100 (50 phân số) => S > 1/2.
Vậy S > 1/2
Cho tổng S = 1/50 + 1/51 + 1/52 + ... + 1/98 + 1/99. Chứng tỏ S > 1/2
\(S=\left(\frac{1}{50}+\frac{1}{51}+...+\frac{1}{74}\right)+\left(\frac{1}{75}+\frac{1}{76}+...+\frac{1}{99}\right)\)
Có: \(\frac{1}{50}+\frac{1}{51}+...+\frac{1}{74}>\frac{1}{75}+\frac{1}{75}+...+\frac{1}{75}=\frac{25}{75}=\frac{1}{3}\)
\(\frac{1}{75}+\frac{1}{76}+...+\frac{1}{99}>\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}=\frac{25}{100}=\frac{1}{4}\)
=> \(S>\frac{1}{3}+\frac{1}{4}=\frac{7}{12}>\frac{6}{12}=\frac{1}{2}\)=> đpcm
Cho S=1/50+1/51+1/52+...+1/98+1/99. Chứng tỏ rằng 1/2< S<1
Chứng tỏ rằng: 1/50 + 1/51 + 1/52 + 1/53 + ... + 1/98 + 1/99 > 1/2. ( giải thích rõ ràng, dễ hiểu).
Từ 50 đến 99 có 50 số; ta cho tất cả các phân số đó về 1/100; ta có 50/100 = 1/2; còn dư một số phần chênh giữa 1/100 va các phân số đó.
tính
S=1/50+1/51+1/52+...........+1/98+1/99
So sánh:
A=1/50+1/51+1/52+.....+1/98+1/99
B=1/2