Chứng minh :\(5^{2014}-5^{2013}+5^{2012}\) chia hêt cho 105
chứng minh : 52014-52013+52012 chia hết cho 105
Ta có:
\(A=5^{2014}-5^{2013}+5^{2012}\)
\(A=5^{2011}\left(5^3-5^2+5\right)\)
\(A=5^{2011}\left(125-25+5\right)\)
\(A=5^{2011}.105\)
\(\Rightarrow A⋮105\)
=> ĐPCM.
Chứng minh rằng : \(5^{2014}-5^{2013}+5^{2012}\)chia hết cho 105
Ta có : 52014 - 52013 + 52012
= 52012.(52 - 5 + 1)
= 52012.21
= 52011.5.21
= 52011.105 \(⋮\)105
=> 52014 - 52013 + 52012 \(⋮\)105
\(5^{2014}-5^{2013}+5^{2012}\)
= \(5^{2011}.\left(5^3-5^2+5\right)\)
= \(5^{2011}.105⋮105\)(ĐPCM)
52014 - 52013 + 52012 = 52012 . ( 52 - 5 + 1 ) = 52012 . 21
52012 chia hết cho 5, 21 chia hết cho 21 mà 5 với 21 là hai số nguyên tố cùng nhau nên 52012 . 21 chia hết cho 105
<33
chứng minh : \(5^{2014}-5^{2013}+5^{2012}\)chia hết cho 105
52014-52013+52012
=52011*53-52011*52+52011*5
=\(5^{2011}\cdot\left(5^3-5^2+5\right)\)
\(=5^{2011}\cdot105\)chia hết cho 105
chứng minh rằng 52014 -52013 + 52012 chia hết cho 105 . Giúp mình với !
\(A=5^{2014}-5^{2013}+5^{2012}=5^{2012}\left(5^2-5^1+5^0\right)=21.5^{2012}\\ \)
\(\hept{\begin{cases}105=21.5\\A=21.5^{2012}\end{cases}}\Rightarrow\frac{A}{105}=\frac{21.5^{2012}}{21.5}=5^{2011}\Rightarrow dpcm\)
5^2014-5^2013+5^2012=5^2012(5^2-5^1+1)
=5^2012.21
=5^2011.5.21
=5^2011.105
Vậy 5^2014-5^2013+5^2012 chia hết cho 105
5 ^ 2014 - 5 ^2013 + 5 ^ 2012 = 5^2012 ( 5 ^ 2 - 5 6 1 + 1 )
=5 ^ 2012 . 21 = 5 ^ 2011 . 5 . 21 = 5 ^ 2011 . 105
Vậy ................
a , CMR : \(5^{2014}-5^{2013}+5^{2012}\)chia hết cho 105
\(5^{2014}-5^{2013}+5^{2012}\)
\(=5^{2011}.\left(5^3-5^2+5\right)\)
\(=5^{2011}.105\)\(⋮105\)
\(\Rightarrow5^{2014}-5^{2013}+5^{2012}⋮105\)\(\left(đpcm\right)\)
câu 1: c/m :\(5^{2014} -5^{2013} +5^{2012}\) chia het cho 105
Ta có: \(5^{2014}-5^{2013}+5^{2012}=5^{2011}\left(5^3-5^2+5\right)\)
\(=5^{2011}.105⋮105\)
\(\Rightarrow5^{2014}-5^{2013}+5^{2012}⋮105\left(đpcm\right)\)
Vậy...
ta có:
\(5^{2014}-5^{2013}+5^{2012}\)
\(=5^{2012}\left(5^2-5+1\right)\)
\(=5^{2012}\left(25-5+1\right)\)
\(=5^{2012}.21\)
ta thấy: \(5^{2012}.21⋮21\)
\(5^{2012}.21⋮5\)
\(\Rightarrow5^{2012}.21⋮21.5\)
\(\Rightarrow5^{2012}.21⋮105\)
\(\Leftrightarrow5^{2014}-5^{2013}+5^{2012}⋮105\left(đpcm\right)\)
CMR:
52014 - 52013 + 52012 chia hết cho 105
Ta có 52014 - 52013 + 52012
= 52012.(52 - 5 + 1)
= 52012.21
= 52011.5.21
= 52011.105 \(⋮\)105
=> 52014 - 52013 + 52012 \(⋮\)105
Ta có :
52014 - 52013 + 52012
= 52012 . (52 - 51 + 1)
= 52012 . (25 - 5 + 1)
= 52012 . 21
= 52011 . 5 . 21
= 52011 . 105\(⋮\)105
=> 52014 - 52013 + 52012 \(⋮\)105 (đpcm)
~Study well~
#Zu
#)Giải :
\(5^{2014}-5^{2013}+5^{2012}=5^{2012}\left(5^2-5^6+1\right)=5^{2012}.21=5^{2011}.5.21=5^{2011}.105\)chia hết cho 105
\(\Rightarrowđpcm\)
Chứng minh rằng (52012+52013+52014) Chia hết cho 31
\(5^{2012}+5^{2013}+5^{2014}=5^{2012}\left(1+5+5^2\right)=5^{2012}\left(1+5+25\right)=31.5^{2012}\)
Luôn luôn chia hết cho 31
chứng minh 5^2014-5^2013+5^2012 chia het cho105