Tính nhanh:
\(S=\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.11}+\frac{3}{11.14}+\frac{3}{14.17}\)
Tính nhanh :
\(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.11}+\frac{3}{11.14}+\frac{3}{14.17}.\)
Lưu ý nếu ai nghĩ là sai đề thì không phải như vậy .
mk đi thi hsg mk bik chắc chắn mk ko sai đâu k mk nhé
3/1.4 +3/4.7+....+3/14.17
=1/1-1/4+1/4-1/7+...+1/14-1/17
=1-1/17
=16/17
\(\frac{3}{1}-\frac{3}{4}+\frac{3}{4}-\frac{3}{7}+...\)\(\frac{3}{14}-\frac{3}{17}\)
\(\frac{3}{1}-\frac{3}{17}\)
= \(\frac{18}{7}\)
\(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.11}+\frac{3}{11.14}+\frac{3}{14.17}\)
\(=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{17}\)
\(=1-\frac{1}{17}\)
\(=\frac{16}{17}\)
tinh nhanh
S=3/1.4+3/4.7+3/7.11+3/11.14+3/14.17
Bài 1 tính nhanh
S=3/1.4+3/4.7+3/7.11+3/11.14+3/14.17
M=2/1.2+2/2.3+2/3.4+......+2/15.16
Giúp mk vs nhé
Mk tích cho
*S=1-1/4+1/4-1/7+1/7-1/11+1/11-1/14+1/14-1/17
S=1-1/17=16/17
*M=2(1/1.2+1/2.3+...+1/15.16)
M=2(1-1/2+1/2-1/3+..+1/15-1/16)
M=2(1-1/16)
M=2.15/16
M=15/8
:w
\(S=\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.11}+\frac{3}{11.14}+\frac{3}{14.17}\)
\(S=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{17}\)
\(S=1-\frac{1}{17}\)
\(S=\frac{16}{17}\)
\(M=\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{15.16}\)
\(M=2.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{15}-\frac{1}{16}\right)\)
\(M=2.\left(1-\frac{1}{16}\right)\)
\(M=2.\frac{15}{16}\)
\(=\frac{30}{16}=\frac{15}{8}\)
\(\frac{5}{1.4}+\frac{5}{3.5}+\frac{5}{5.7}+...+\frac{5}{99.101}
\)
\(\frac{3^2}{8.11}+\frac{3^2}{11.14}+\frac{3^2}{14.17}+...+\frac{3^2}{197.200}\)
lúc đầu ý bn là 5/1.3 đúng k, mk chỉnh lại như thế cho tiện nhé
a) \(\frac{5}{1\times3}+\frac{5}{3\times5}+\frac{5}{5\times7}+...+\frac{5}{99\times101}\)
\(=\frac{5}{2}\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\right)\)
\(=\frac{5}{2}\left(1-\frac{1}{101}\right)\)
\(=\frac{5}{2}\times\frac{100}{101}=\frac{250}{101}\)
b) \(\frac{3^2}{8\times11}+\frac{3^2}{11\times14}+\frac{3^2}{14\times17}+...+\frac{3^2}{197\times200}\)
\(=\frac{9}{8\times11}+\frac{9}{11\times14}+\frac{9}{14\times17}+...+\frac{9}{197\times200}\)
\(=3\left(\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{17}+...+\frac{1}{197}-\frac{1}{200}\right)\)
\(=3\left(\frac{1}{8}-\frac{1}{200}\right)\)
\(=3\times\frac{3}{25}=\frac{9}{25}\)
Ta có \(\frac{3^2}{8.11}+\frac{3^2}{11.14}+...+\frac{3^2}{197.200}\)
\(\Rightarrow3^2.\left(\frac{1}{8.11}+\frac{1}{11.14}+...+\frac{1}{197.200}\right)\)
\(\Rightarrow9.\frac{1}{3}.\left(\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+...+\frac{1}{197}-\frac{1}{200}\right)\)
\(\Rightarrow3.\left(1-\frac{1}{200}\right)\)
\(\Rightarrow3.\frac{199}{200}=\frac{597}{200}\)
a) \(\frac{5}{1.3}+\frac{5}{3.5}+...+\frac{5}{99.101}\)
\(=\frac{5}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\right)\)
\(=\frac{5}{2}\left(1-\frac{1}{101}\right)\)
\(=\frac{5}{2}.\frac{100}{101}\)
\(=\frac{250}{101}\)
1/1.4 + 1/4.7 + 1/7.11 + ... + 1/n(n + 3) = 89/270
tìm n :
\(\frac{1}{1.4}+\frac{1}{4.7}+...+\frac{1}{n\left(n+3\right)}=\frac{89}{270}\)
Ta có : \(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{n\left(n+3\right)}=\frac{89}{270}\)
\(\Rightarrow\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+....+\frac{3}{n\left(n+3\right)}=\frac{267}{270}\)
\(\Rightarrow1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+.....+\frac{1}{n}-\frac{1}{n+3}=\frac{267}{270}\)
\(\Rightarrow1-\frac{1}{n+3}=\frac{267}{270}\)
=> \(\frac{1}{n+3}=\frac{1}{90}\)
=> n + 3 = 90
=> n = 87
Nhân cả 2 vế với 3 ta được:
\(\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{n\left(n+3\right)}=\frac{89}{90}.\)
Vậy tử số của các phân số trên đã bằng hiệu của 2 thừa số ở mẫu số.(Ngoại trừ P/S\(\frac{89}{90}.\))
=> ta được:
\(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-...+\frac{1}{n}-\frac{1}{n+3}=\frac{89}{90}.\)
Rút gọn hết ta được :
\(1-\frac{1}{n+3}=\frac{89}{90}\)
\(\frac{1}{n+3}=1-\frac{89}{90}\)
\(\frac{1}{n+3}=\frac{1}{90}.\)
Vì 1=1 => n+3=90
n = 90-3
n=87
Vậy n=87.
Đ/S:87
\(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.11}+....+\frac{1}{n\left(n+3\right)}=\frac{89}{270}\)
\(\Leftrightarrow\frac{1}{3}.\left(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{1}{n}-\frac{1}{n+3}\right)=\frac{89}{270}\)
\(\Leftrightarrow\frac{1}{3}.\left(\frac{1}{1}-\frac{1}{n+3}\right)=\frac{89}{270}\div\frac{1}{3}\)
\(\Leftrightarrow\frac{1}{1}-\frac{1}{n+3}=\frac{89}{90}\)
\(\Leftrightarrow\frac{1}{n+3}=\frac{1}{1}-\frac{89}{90}=\frac{1}{90}\)
\(\Leftrightarrow n+3=90\Rightarrow n=90-3=87\)
tính nhanh
\(S=\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{97.100}\)
S = 3 - \(\frac{3}{100}\)= \(\frac{300}{100}-\frac{3}{100}=\frac{297}{100}\)
S=3/1.4+3/4.7+3/7.10+.....+3/97.100
S=1/1-1/4+1/4-1/7+1/7-1/10+.....+1/97-1/100
S=1-1/100
S=99/100
Tính : \(\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+\frac{3}{11.14}+\frac{3}{14.17}\)
Đặt \(A=\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+\frac{3}{11.14}+\frac{3}{14.17}\)
\(A=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{17}\)
\(A=\frac{1}{2}-\frac{1}{17}\)
\(A=\frac{15}{34}\)
= \(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{17}\)= \(\frac{1}{2}-\frac{1}{17}\)=\(\frac{15}{34}\)
Tính C=1.4+2.5+3.6+4.7+...+1006.1009
Tính S=\(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...\)
biết tổng S có 100 số hạng.
Tính tổng: \(B=\frac{3^2}{8.11}+\frac{3^2}{11.14}+\frac{3^2}{14.17}+...+\frac{3^2}{197.200}\)
\(B=\frac{9}{8\cdot11}+\frac{9}{11\cdot14}+...+\frac{9}{197\cdot200}\)
\(=3\left(\frac{3}{8\cdot11}+\frac{3}{11\cdot14}+...+\frac{3}{197\cdot200}\right)\)
\(=3\left(\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+...+\frac{1}{197}-\frac{1}{200}\right)\)
\(=3\left(\frac{1}{8}-\frac{1}{200}\right)\)
\(=3\left(\frac{24}{200}-\frac{1}{200}\right)\)
\(=3\cdot\frac{23}{200}\)
đúng
\(\Rightarrow B=3\left(\frac{3}{8.11}\right)+3\left(\frac{3}{11.14}\right)+..+3\left(\frac{3}{197.200}\right)\)
\(\Rightarrow B=3\left(\frac{3}{8.11}+\frac{3}{11.14}+...+\frac{3}{197.200}\right)\)
\(\Rightarrow B=3\left(\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+...+\frac{1}{197}-\frac{1}{200}\right)\)
\(\Rightarrow B=3\left(\frac{1}{8}-\frac{1}{200}\right)=3.\frac{3}{25}=\frac{9}{25}\)
Vậy \(B=\frac{9}{25}\)
Chúc bn học tốt..!