Tìm x thuộc Z . Sao cho các biểu thức sau có giá trị nguyên :
\(C=\frac{x^2+2x-3}{\left(x+1\right)\left(x-1\right)}\)
Cho biểu thức :\(A=[\frac{2}{\left(x+1\right)^3}\left(\frac{1}{x}+1\right)+\frac{1}{x^2+2x+1}\left(\frac{1}{x^2}+1\right)]:\frac{x-1}{x^3}\)
a/ Thu gọn A
b/ Tìm các giá trị của x để A<1
c) Tìm các giá trị nguyên của x để A có giá trị nguyên
Ta có \(A=[\frac{2}{\left(x+1\right)^3}\left(\frac{1}{x}+1\right)+\frac{1}{x^2+2x+1}\left(\frac{1}{x^2}+1\right)]:\frac{x-1}{x^3}\)
\(\Leftrightarrow A=\left[\frac{2}{\left(x+1\right)^3}.\frac{x+1}{x}+\frac{1}{\left(x+1\right)^2}.\frac{x^2+1}{x^2}\right].\frac{x^3}{x-1}\)
\(\Leftrightarrow A=\left[\frac{2x+x^2+1}{x^2\left(x+1\right)^2}\right].\frac{x^3}{x+1}=\frac{x}{x+1}\)
Để \(A=\frac{x}{x+1}< 1\Leftrightarrow\frac{1}{x+1}>0\Leftrightarrow x>-1\)
Để \(A=1-\frac{1}{x+1}\text{ nguyên thì }\frac{1}{x+1}\text{ nguyên hay }x\in\left\{-2,0\right\} \)
Đề 3
Câu 1: Cho biểu thức \(A=[\frac{2}{\left(x+1\right)^3}\left(\frac{1}{x}+1\right)+\frac{1}{x^2+2x+1}\left(\frac{1}{x^2}+1\right)]:\frac{x-1}{x^3}\)
a) Thu gọn A
b) Tìm các giá trị của X dể A<1
c) Tìm các giá trị nguyên của x để A có giá trị ngyên
a) ĐKXĐ: \(x\ne-1;0;1.\)Ta có:
\(A=\left[\frac{2}{\left(x+1\right)^3}\left(\frac{1}{x}+1\right)+\frac{1}{x^2+2x+1}\left(\frac{1}{x^2}+1\right)\right]:\frac{x-1}{x^3}\)
\(=\left[\frac{2}{\left(x+1\right)^3}\cdot\frac{x+1}{x}+\frac{1}{\left(x+1\right)^2}\cdot\frac{x^2+1}{x^2}\right]\cdot\frac{x^3}{x-1}\)
\(=\left[\frac{2}{x\left(x+1\right)^2}+\frac{x^2+1}{x^2\left(x+1\right)^2}\right]\cdot\frac{x^3}{x-1}\)
\(=\left[\frac{2x}{x^2\left(x+1\right)^2}+\frac{x^2+1}{x^2\left(x+1\right)^2}\right]\cdot\frac{x^3}{x-1}\)
\(=\frac{2x+x^2+1}{x^2\left(x+1\right)^2}\cdot\frac{x^3}{x-1}\)
\(=\frac{\left(x+1\right)^2\cdot x}{\left(x+1\right)^2\left(x-1\right)}=\frac{x}{x-1}.\)
Vậy \(A=\frac{x}{x-1}\)với \(x\ne-1;0;1.\)
b) A < 1 \(\Leftrightarrow\frac{x}{x-1}< 1\Leftrightarrow\frac{x}{x-1}-1< 0\Leftrightarrow\frac{x}{x-1}-\frac{x-1}{x-1}< 0\)\(\Leftrightarrow\frac{1}{x-1}< 0\)
\(\Leftrightarrow x-1< 0\)(do 1 > 0)\(\Leftrightarrow x< 1.\)
Kết hợp ĐKXĐ, A < 1 khi \(x< 1\)và \(x\ne-1;0.\)
c) \(A\inℤ\Leftrightarrow\frac{x}{x-1}\inℤ.\)Mà \(x\inℤ\)\(\Rightarrow x⋮\left(x-1\right)\Rightarrow\left(x-1+1\right)⋮\left(x-1\right)\Rightarrow1⋮\left(x-1\right)\Rightarrow\left(x-1\right)\inƯ\left(1\right)=\left\{1;-1\right\}.\)Ta lập bảng sau:
\(x-1\) | 1 | -1 |
\(x\) | 2 | 0 |
Kết luận | x thoả mãn ĐKXĐ | x không thoả mãn ĐKXĐ |
Vậy để A nguyên thì x = 2.
Cho biểu thức P=\(\left(\frac{\text{1}}{x^2+x+1}+\frac{1}{x^2-x}+\frac{2x}{1-x^3}\right).\left(x^2-x\right)\)
a) Rút gọn biểu thức P?
b) tìm các giá trị nguyên của x để P nhận giá trị nguyên ?
Cho biểu thức: M = 1 - \(\left[\frac{2x-1+\sqrt{x}}{1-x}+\frac{2x\sqrt{x}+x-\sqrt{x}}{1+x\sqrt{x}}\right].\left[\frac{\left(x-\sqrt{x}\right)\left(1-\sqrt{x}\right)}{2\sqrt{x}-1}\right]\)
a. Tìm giá trị của x để M có nghĩa, rút gọn M
b. Tìm giá trị nhỏ nhất của biểu thức \(\left(2000-M\right)\)khi x\(\ge4\)
Tìm các số nguyên z để giá trị của \(M\in N\)
Cho biểu thức P=\(\left(\frac{2x-x^2}{2x^2+8}-\frac{2x^2}{x^3-2x^2+4x-8}\right)\).\(\left(\frac{2}{x^2}+\frac{1-x}{x}\right)\)
a)Rút gọn P;
b)Tìm các giá trị nguyên của x để P có giá trị nguyên;
c)Tìm x để P>1.
Bài 1: Cho biểu thức:
\(P=\left(\frac{x+1}{x-2}-\frac{2x}{x+2}+\frac{5x+2}{4-x^2}\right):\frac{3x-x^2}{x^2+4x+4}\)
a, Rút gọn biểu thức P
b, tìm x để |P|= 2
c, Tìm giá trị nguyên của x để P nhận giá trị là số nguyên
Bài 2:
a, Phân tích đa thức sau thành nhân tử:
\(\left(x+2\right)\left(2x^2-5x\right)-x^3-8\)
b, Cho x, y, z là các số nguyên khác 0 đôi một khác nhau thỏa mãn:\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)
Tính giá trị của biểu thức:
\(A=\frac{yz}{x^2+2yz}+\frac{xz}{y^2+2xz}+\frac{xy}{z^2+2xy}\)
Bài 3:Tìm tất cả các cặp số nguyên (x;y) thỏa mãn:
\(y\left(x-1\right)=x^2+2\)
Bài 1:
Cho biểu thức: \(A=\left(\frac{1}{1-x}+\frac{2}{x+1}-\frac{5-x}{1-x^2}\right):\frac{1-2x}{x^2-1}\)
a, Rút gọn biểu thức A
b, Tìm các giá trị nguyên của x để biểu thức A nhận giá trị nguyên
c, Tìm x để |A|=A
Bài 2: Cho \(a^3+b^3+c^3=3abc\)với \(a,b,c\ne0\)
Tính giá trị biểu thức \(P=\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1 +\frac{c}{a}\right)\)
Bài 3: Tìm các số có ba chữ số chia hết cho 7 và tổng các chữ số của nó cũng chia hết cho 7
a) \(A=\left(\frac{1}{1-x}+\frac{2}{x+1}-\frac{5-x}{1-x^2}\right):\frac{1-2x}{x^2-1}\) (ĐKXĐ: \(x\ne\pm1\) )
\(=\left(\frac{x+1+2\left(1-x\right)-5+x}{1-x^2}\right):\frac{1-2x}{x^2-1}\)
\(=\left(\frac{x+1+2-2x-5+x}{1-x^2}\right):\frac{1-2x}{x^2-1}\)
\(=\left(\frac{-2}{1-x^2}\right):\frac{1-2x}{x^2-1}\)
\(=\frac{2}{x^2-1}.\frac{x^2-1}{1-2x}=\frac{2}{1-2x}\)
b) Để x nhận giá trị nguyên <=> 2 chia hết cho 1 - 2x
<=> 1-2x thuộc Ư(2) = {1;2;-1;-2}
Nếu 1-2x = 1 thì 2x = 0 => x= 0
Nếu 1-2x = 2 thì 2x = -1 => x = -1/2
Nếu 1-2x = -1 thì 2x = 2 => x =1
Nếu 1-2x = -2 thì 2x = 3 => x = 3/2
Vậy ....
cho biểu thức A = \(\left(\frac{2x}{x-3}-\frac{x-1}{x+3}+\frac{x^2+1}{9-x^2}\right):\left(1-\frac{x-1}{x+3}\right)\)
a) rút gọn biểu thức
b) tính giá trị biểu thức A biết | x - 5 | = 2
c) tìm giá trị nguyên của x để biểu thức A nhận giá trị nguyên
Bài 1: Tính nhanh giá trị biểu thức
\(\left(2x+1\right)^2+\left(2x-1\right)^2-2\left(1+2x\right)\left(1-2x\right)\)
Tại x = 100
Bài 2:Cho biểu thức
\(B=\left(\frac{x+1}{2x-2}+\frac{3}{x^2-1}-\frac{x+3}{2x+2}\right)\)
a) Tìm điều kiện của x để giá trị của biểu thức đc xác định
b) CMR khi giá trị của biểu thức đc xác định thì nó không phụ thuộc và biến x
thiếu đề : \(\left(\frac{x+1}{2x-2}+\frac{3}{x^2-1}-\frac{x+3}{2x+2}\right).\frac{4x^2-4}{5}.\)
Bài 2 :
a, Để \(B=\left(\frac{x+1}{2x-2}+\frac{3}{x^2-1}-\frac{x+3}{2x+2}\right)\frac{4^2-4}{5}\)
\(\Rightarrow\hept{\begin{cases}2x-2\ne0\\x^2-1\ne0\\2x+2\ne0\end{cases}}\Rightarrow\orbr{\begin{cases}x\ne1\\x\ne-1\end{cases}}\)
b,\(B=\left(\frac{x+1}{2x-2}+\frac{3}{x^2-1}-\frac{x+3}{2x+2}\right)\frac{4x^2-4}{5}\)
\(B=\left[\frac{x+1}{2\left(x-1\right)}+\frac{3}{\left(x+1\right)\left(x-1\right)}-\frac{x+3}{2\left(x+1\right)}\right].\frac{4\left(x-1\right)\left(x+1\right)}{5}\)
\(B=\left[\frac{x^2+2x+1}{2\left(x-1\right)\left(x+1\right)}+\frac{6}{2\left(x-1\right)\left(x+1\right)}-\frac{x^2+2x-3}{2\left(x-1\right)\left(x+1\right)}\right]\frac{4\left(x-1\right)\left(x+1\right)}{5}\)
\(B=\left[\frac{x^2+2x+1+6-x^2-2x+3}{2\left(x-1\right)\left(x+1\right)}\right]\frac{4\left(x-1\right)\left(x+1\right)}{5}\)
\(B=\frac{4}{2\left(x-1\right)\left(x+1\right)}.\frac{4\left(x-1\right)\left(x+1\right)}{5}\)
\(B=\frac{8}{5}\)
=> giá trị của B ko phụ thuộc vào biến x
bài 1
=\(^{\left(2x+1\right)^2+2\left(2x+1\right)\left(2x-1\right)+\left(2x+1\right)^2}\)
=\(\left(2x+1+2x-1\right)^2\)
=\(\left(4x\right)^2\)
=\(16x^2\)
Tại x=100 thay vào biểu thức trên ta có:
16*100^2=1600000
\(B=\left(\frac{x+1}{2x-2}+\frac{3}{x^2-1}-\frac{x+3}{2x+2}\right)=\left[\frac{x+1}{2.\left(x-1\right)}+\frac{3}{x^2-1}-\frac{x+3}{2.\left(x+1\right)}\right]\)
\(\Rightarrow\hept{\begin{cases}x\ne1\\x\ne\pm1\\x\ne-1\end{cases}\Rightarrow x\pm1}\)
Vậy để B xác định => x=+-1