Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
an nguyen
Xem chi tiết
Phùng Quang Thịnh
16 tháng 4 2017 lúc 6:21

Vì bạn bảo gợi ý nên gợi ý thui không giải:
1) Bạn thấy con A có tử 6- 840 là âm mà 520+1 là dương =>tử âm,mẫu dương=> p/s đó là âm
Còn phần B thì trên tử 3-540 và 2-720 là 2 số âm,mà tử âm,mẫu âm thì phân số đó dương
Số dương như thế nào với số âm thì tự làm...(gợi ý mà)
2) Phần b giống phần a nhé!
 

an nguyen
16 tháng 4 2017 lúc 11:33

Cảm ơn bạn Phùng Quang Thịnh :D
Còn bài 3 mình đã thử giải nhưng chưa ra , vì mẫu số là các số tự nhiên không liền kề nhau nên không rút gọn được .

Phùng Quang Thịnh
16 tháng 4 2017 lúc 13:34

an nguyen cho tôi một chút thời gian để làm bài 3 nhé(chiều tối tôi sẽ có đáp án,vì giờ tôi bận nhé :) )

Ran shibuki
Xem chi tiết
✓ ℍɠŞ_ŦƦùM $₦G ✓
2 tháng 6 2018 lúc 12:10

Câu hỏi của Lê Thị Minh Trang - Toán lớp 6 - Học toán với OnlineMath

Xem bài 1 nhé !

Trịnh Sảng và Dương Dươn...
2 tháng 6 2018 lúc 12:37

Bài 1:

Xét vế phải :

\(P=\frac{99}{50}-\frac{97}{49}+...+\frac{7}{4}-\frac{5}{3}+\frac{3}{2}\)\(-1=2\)\(\left(\frac{99}{100}-\frac{97}{98}+...+\frac{7}{8}-\frac{5}{6}+\frac{3}{4}-\frac{1}{2}\right)\)

\(=2\left(\left(1-\frac{1}{100}\right)-\left(1-\frac{1}{98}\right)+...+\left(1-\frac{1}{4}\right)-\left(1-\frac{1}{2}\right)\right)\)

\(=2\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{98}-\frac{1}{100}\right)\)

\(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{49}+\frac{1}{50}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{50}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{25}+\frac{1}{26}+...+\frac{1}{50}\right)-\left(1+\frac{1}{2}+...+\frac{1}{25}\right)\)

\(=\frac{1}{26}+\frac{1}{27}+...+\frac{1}{49}+\frac{1}{50}\)

Đẳng thức được chứng tỏ là đúng

Bài 2 :

Đặt \(A'=\frac{3}{4}.\frac{4}{5}.\frac{7}{8}...\frac{4999}{5000}\)

Rõ ràng \(A< A'\)

SUY RA \(A^2< AA'=\frac{2}{50000}=\frac{1}{2500}=\left(\frac{1}{50}\right)^2\)

Nên \(A< \frac{1}{50}=0,02\)

Chúc bạn học tốt ( -_- )

Nguyễn Anh Kim Hân
Xem chi tiết
Nguyễn Trọng Hiếu
Xem chi tiết
JOKER_Võ Văn Quốc
14 tháng 8 2016 lúc 13:57

\(S=\frac{3}{1^2\cdot2^2}+\frac{5}{2^2\cdot3^2}+\frac{7}{3^2\cdot4^2}+...+\frac{99}{49^2\cdot50^2}\)

\(=\frac{1}{1^2}-\frac{1}{2^2}+\frac{1}{2^2}-\frac{1}{3^2}+.....+\frac{1}{49^2}-\frac{1}{50^2}\)

\(=1-\frac{1}{50^2}=\frac{2499}{2500}\)

\(T=\frac{1}{\left(2-1\right)\left(2+1\right)}+\frac{1}{\left(3-1\right)\left(3+1\right)}+...+\frac{1}{\left(50-1\right)\left(50+1\right)}\)

\(=\frac{1}{1\cdot3}+\frac{1}{2\cdot4}+\frac{1}{3\cdot5}+...+\frac{1}{49\cdot51}\)

\(=\frac{1}{2}\cdot\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{2}-\frac{1}{4}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{49}-\frac{1}{51}\right)\)

\(=\frac{1}{2}\cdot\left(1+\frac{1}{2}-\frac{1}{51}\right)=\frac{151}{204}\)

Vì \(\frac{2499}{2500}>\frac{151}{204}\)nên S>T

Nguyễn Trọng Hiếu
14 tháng 8 2016 lúc 20:02

JOKER_Võ Văn Quốc, T = \(\frac{1}{2}.\left(1-\frac{1}{51}+\frac{1}{2}-\frac{1}{50}\right)\)mới đúng
Sẽ dễ hơn nếu bạn chia ra 2 vế \(\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{49.51}\)và \(\frac{1}{2.4}+\frac{1}{4.6}+...+\frac{1}{48+50}\)

꧁trần tiến đͥ�ͣ�ͫt꧂
Xem chi tiết
ღƘα Ƙαღ
27 tháng 2 2020 lúc 11:36

a)\(\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+\frac{4}{5}+\frac{5}{6}=\frac{71}{20}\)  và \(4=\frac{4}{1}=\frac{80}{20}\)
mà 80 > 7 suy ra
 \(\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+\frac{4}{5}+\frac{5}{6}< 4\)

b) \(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}=\frac{7}{8}\)  và \(1=\frac{8}{8}\)
mà 7 < 8 suy ra \(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}< 1\)
 

Khách vãng lai đã xóa
❤Firei_Star❤
Xem chi tiết
Wall HaiAnh
1 tháng 5 2018 lúc 9:33

Ta có

\(A=\frac{\left(3\frac{2}{5}+\frac{1}{5}\right):2\frac{1}{2}}{\left(5\frac{3}{7}-2\frac{1}{4}\right):4\frac{43}{56}}\)                                                   \(B=\frac{1,2:\left(1\frac{1}{5}-1\frac{1}{4}\right)}{0,32+\frac{2}{25}}\)

\(\Leftrightarrow A=\frac{\left(\frac{17}{5}+\frac{1}{5}\right):\frac{5}{2}}{\left(\frac{38}{7}-\frac{9}{4}\right):\frac{276}{56}}\)                                            \(\Leftrightarrow B=\frac{\frac{6}{5}:\left(\frac{6}{5}-\frac{5}{4}\right)}{\frac{8}{25}+\frac{2}{25}}\)

\(\Leftrightarrow A=\frac{\frac{18}{5}:\frac{5}{2}}{\frac{89}{28}:\frac{276}{56}}\)                                                            \(\Leftrightarrow B=\frac{\frac{6}{5}:\left(-\frac{1}{20}\right)}{\frac{2}{5}}\)

\(\Leftrightarrow A=\frac{\frac{36}{25}}{\frac{89}{138}}\)                                                                       \(\Leftrightarrow B=\frac{\frac{5}{4}}{\frac{2}{5}}\)

\(\Leftrightarrow A=\frac{4968}{2225}\)                                                                      \(\Leftrightarrow B=\frac{25}{8}\)

\(\Leftrightarrow A=\frac{39744}{17800}\)                                                                     \(\Leftrightarrow B=\frac{55625}{17800}\)

Ta có: 39744<55625

\(\Rightarrow A< B\)

Vậy A<B

❤Firei_Star❤
1 tháng 5 2018 lúc 9:34

kb vói mình đã

manh nguyen
Xem chi tiết
Cua Trôi - Trường Tồn
12 tháng 3 2019 lúc 12:47

Bài 5 :

\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)

    \(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{59}\)

     \(A=1-\frac{1}{50}\)

từ trên ta có : \(1-\frac{1}{50}< 1\)

\(\Rightarrow A< 1\)

     

❤Firei_Star❤
Xem chi tiết
Nguyễn Mạc Diệu Linh
24 tháng 4 2018 lúc 17:02

A =\(\frac{\left(\frac{17}{5}+\frac{1}{5}\right).\frac{2}{5}}{\left(\frac{38}{7}-\frac{9}{4}\right).\frac{56}{267}}\)

A=\(\frac{36}{25}\).\(\frac{3}{2}\)=\(\frac{54}{25}\)=2,16

B=\(\frac{1,2:\left(\frac{6}{5}-\frac{5}{4}\right)}{0,32+\frac{2}{25}}\)=-24.\(\frac{5}{2}\)=-60

vì 2,16 > -60 Vậy A>B

Trần Thị Ngát
Xem chi tiết
Lê Thanh Minh
30 tháng 4 2018 lúc 8:54

Đương nhiên là a<b rồi,vì A thuộc B mà

Đỗ Thị Thanh Tâm
18 tháng 4 2019 lúc 22:05

ChoA=1/26+1/27+1/28+..  +1/49, B=1-1/2+1/3-1/4+... +1/49-1/50

Mike
25 tháng 6 2019 lúc 13:58

B = 1 + 1/2 + 1/3 + ... + 1/50

b = (1 + 1/3 + 1/5 + ... + 1/49) + (1/2 + 1/4 + 1/6 + ... + 1/50)

b = (1 + 1/2 + 1/3 + 1/4 + ... + 1/50) - 2(1/2 + 1/4 + 1/6 + ... + 1/50)

b = 1 + 1/2 + ... + 1/50 - 1 - 1/2 - 1/3 - ... - 1/25

b = 1/26 + 1/27 + 1/28  + ... + 1/50

vậy a = b