P=2015 x mũ 3 y² -5²y +8x²y + ax mũ3 (a là hằng số ).tìm a biết đa thức P có bậc bằng 3
tam thức bậc hai là đa thức có dạng f(x) = ax2 + bx + c với a, b, c là hằng số, a ≠ 0. Hãy xác định các hệ số a, b biết f(1) = 2; f(3) = 8
\(a\ne0\)
\(f\left(1\right)=2\)
\(\Rightarrow a+b=2\)
\(f\left(3\right)=8\)
\(\Rightarrow3a+b=8\)
\(\Rightarrow2a+a+b=8\)
\(\Rightarrow2a=6\)
\(\Rightarrow a=3\)
\(\Leftrightarrow b=-1\)
Vậy đa thức đã cho là \(f\left(x\right)=3x-1\)
a≠0
ƒ (1)=2
⇒a+b=2
ƒ (3)=8
⇒3a+b=8
⇒2a+a+b=8
⇒2a=6
⇒a=3
⇔b=−1
Vậy đa thức đã cho là ƒ (x)=3x−1
cho 2 đơn thức: A=2a mũ 3 b(-1/2ab) a mũ 2 b và B=2x mũ 2 y(-3x mũ 2 y mũ 2)x
a,thu gọn A và B
b,tìm bậc và hệ số 2 đơn thức nêu trên
Cho đa thức sau: 3xy^2+5x^3-6+8xy^2-7-8x^3
a)Hãy rút gọn và tìm bậc của đa thức trên
b)Thay x=2; y=-1 vào đa thức trên rồi tính
c)Nếu thay 3xy^2 bằng 5xyz^4 thì bậc của đa thức trên là bao nhiêu?
cho đa thức A(x) = (x-2).(x-1). hãy xác định hệ số a,b của đa thức B(x) = 2x mũ 3 + ax mũ 2 + bx + 4 biết rằng nghiệm của đa thức A(x) cũng là nghiệm của đa thức B(x)
Dễ thấy A(x) chỉ có 2 nghiệm là 2 và 1
=>2 và 1 cũng là nghiệm của B(x)
<=>B(1)=0 và B(2)=0
<=>2+a+b+4=0 và 16+4a+2b+4=0
<=>a+b=-6 và 2(2a+b)=-20
<=>a+b=-6 và 2a+b=-10
Suy ra:a=-4 và b=-2
a) Cho đa thức f(x)= ax2+bx+c với a,b,c là các số thực. Biết rằng f(0) ; f(1) ; f(2) có trị nguyên. Chứng minh rằng 2a,2b,2c có giá trị nguyên.
c) Tìm x,y thuộc N biết : 36-y2=8.(x-2010)2
\(f\left(x\right)=ax^2+bx+c\Rightarrow\hept{\begin{cases}f\left(0\right)=c\\f\left(1\right)=a+b+c\\f\left(2\right)=4a+2b+c\end{cases}}\)
\(f\left(0\right)\) nguyên \(\Rightarrow c\) nguyên \(\Rightarrow\hept{\begin{cases}2a+2b\\4a+2b\end{cases}}\) nguyên
\(\Rightarrow\left(4a+2b\right)-\left(2a+2b\right)=2a\)(nguyên)
\(\Rightarrow2b\) nguyên
\(\Rightarrowđpcm\)
\(36-y^2\le36\)
\(8\left(x-2010\right)^2\ge0;8\left(x-2010\right)^2⋮8\)
\(\Rightarrow\hept{\begin{cases}0\le8\left(x-2010\right)^2\le36\\8\left(x-2010\right)^2⋮8\\8\left(x-2010\right)^2\in N\end{cases}}\)
Giai tiep nhe
Cho đa thức P=3x4-7x3y+10xy2-14xy3-y3-5.Tìm đa thức Q có ít hạng tử nhất sao cho tổng P+Q là đa thức thuần nhất có:a)Bậc 4 b)Bậc 3
Đa thức P(x) bậc 4 có hệ số bậc cao nhất là 1. Biết P(1)=0; P(3)=0; P(5)=0
Tính giá trị của biểu thức: Q= P(-2) + 7P(6)
. Ta có: P(1)= 0, P(3)= 0, P(5)= 0 => 1,3,5 là nghiệm của pt, nên P(x) chứa nhân tử: (x-1) ; (x-3) ; (x-5)
. Vì P(x) bậc 4, có hệ số bậc cao nhất là 1 nên P(x) có dạng: \(\left(x-1\right)\left(x-3\right)\left(x-5\right)\left(x-a\right)\)
. \(Q=P\left(-2\right)+7P\left(-6\right)\) = \(\left(-2-1\right)\left(-2-3\right)\left(-2-5\right)\left(-2-a\right)+7\left(6-1\right)\left(6-3\right)\left(6-5\right)\left(6-a\right)\)
\(=210+105a+630-105a\) \(=840\)
. Vậy \(Q=840\)
Cho a,b,c là hằng số và a=b+c=2004 .Tính giá trị của các đa thức sau: A= ax^3y^3+bx^2y+cxy^2 với x=1,y=1
Cho đa thức bậc 4 : P(x) có hệ số cao nhất là 1. BIết P(1) = 0 ; P(3) = 0 ; P(5) = 0. Tính M = P(-2) + 7. P(6) + 201