Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Huong Vu
Xem chi tiết
Linh Linh
26 tháng 1 2019 lúc 21:34

tội nghiệp 4 năm rồi mà dell cs ai trả lời

Phan Thị Minh
Xem chi tiết
Kinomoto Sakura
Xem chi tiết
Mai Phương Nguyễn
Xem chi tiết
Nguyễn Hoàng Minh
24 tháng 12 2021 lúc 21:48

Áp dụng PTG ta có: \(c^2=a^2+b^2\) với \(n=1\)

Giả sử đúng với \(n=k\)

\(\Rightarrow A_k=a^{2k}+b^{2k}\le c^{2k}\)

Cần cm nó cũng đúng với \(n=k+1\)

\(\Rightarrow A_{k+1}=a^{2k+2}+b^{2k+2}=c^{2k+2}\\ \Rightarrow\left(a^{2k}+b^{2k}\right)\left(a^2+b^2\right)-a^2b^{2k}-a^{2k}b^2\le c^{2k}\cdot c^2=c^{2k+2}\)

Vậy BĐT đúng với \(n=k+1\)

\(\RightarrowĐpcm\)

Nguyễn Ngọc Ánh
Xem chi tiết
๖Fly༉Donutღღ
12 tháng 2 2018 lúc 10:28

Áp dụng định lý PITAGO :

Ta có : \(c^2=a^2+b^2\)

Nhân cả 2 vế với n thì ta có :

\(\Rightarrow\)\(a^{2n}+b^{2n}=c^{2n}\)

Vậy \(a^{2n}+b^{2n}=c^{2n}\left(ĐPCM\right)\)

๖Fly༉Donutღღ
2 tháng 3 2018 lúc 21:38

Làm đúng cho sai không công bằng cút nào nhé trẩu

Rồng Lửa
22 tháng 4 2018 lúc 18:43

ngủ sao nhân 2 vế với n được làm như mày tao làm xong lâu rồi

Kiệt Nguyễn
Xem chi tiết
Nguyễn Linh Chi
11 tháng 9 2019 lúc 8:50

a, b, c là 3 cạnh của tam giác vuông => a, b, c>0 

Chứng minh  \(a^{2n}+b^{2n}\le c^{2n}\)  (1)  quy nạp theo n.

+) Với n=1 \(a^2+b^2=c^2\)  ( đúng)

+) Với n=2 \(a^4+b^4=\left(a^2+b^2\right)^2-2a^2b^2=c^4-2a^2b^2< c^4\)

=> (1) đúng với n=2

+) G/s: (1) đúng với n  . Nghĩa là: \(a^{2n}+b^{2n}\le c^{2n}\)

Ta chứng minh (1) đúng với n+1

Thật vậy ta có:

\(a^{2\left(n+1\right)}+b^{2\left(n+1\right)}=a^{2n+2}+b^{2n+2}=a^{2n}.a^2+b^{2n}.b^2^{ }\)

\(=\left(a^{2n}+b^{2n}\right)\left(a^2+b^2\right)-a^2.b^{2n}-a^{2n}.b^2\le c^{2n}.c^2-a^2b^{2n}-a^{2n}.b^2< c^{2n}.c^2=c^{2\left(n+1\right)}\)

=> (1) đúng với n+1

Vậy (1) đúng với mọi n>0

'Vậy \(a^{2n}+b^{2n}\le c^{2n}\)

Nguyễn Thanh Hà
Xem chi tiết
Phương Thảo
Xem chi tiết
Hồ Xuân Thái
Xem chi tiết
Hồ Xuân Thái
23 tháng 3 2017 lúc 14:22

cô Loan và mọi người ơi giúp tôi với