Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
dbrby
Xem chi tiết
Nguyễn Việt Lâm
20 tháng 4 2019 lúc 16:29

BĐT chỉ đúng với điều kiện \(a;b\) dương, còn a, b âm thì sai hoàn toàn

Khi \(a;b\) dương, biến đổi tương đương:

\(\frac{a^n+b^n}{a^{n-1}+b^{n-1}}\ge\frac{a^{n-1}+b^{n-1}}{a^{n-2}+b^{n-2}}\Leftrightarrow\left(a^n+b^n\right)\left(a^{n-2}+b^{n-2}\right)\ge\left(a^{n-1}+b^{n-1}\right)^2\)

\(\Leftrightarrow a^{2\left(n-1\right)}+b^{2\left(n-1\right)}+a^nb^{n-2}+a^{n-2}b^n\ge a^{2\left(n-1\right)}+b^{2\left(n-1\right)}+2a^{n-1}b^{n-1}\)

\(\Leftrightarrow a^nb^{n-2}+a^{n-2}b^n\ge2a^{n-1}b^{n-1}\) (luôn đúng theo BĐT Cauchy)

Vậy BĐT được chứng minh

Trần Thanh Hải
Xem chi tiết
Incursion_03
27 tháng 4 2019 lúc 18:43

Áp dụng bđt sau : \(\frac{a^n+b^n}{2}\ge\frac{\left(a+b\right)^n}{2}\)ta được

\(\frac{1}{\left(1+a\right)^n}+\frac{1}{\left(1+b\right)^n}\ge2\left(\frac{\frac{1}{1+a}+\frac{1}{1+b}}{2}\right)^n\)

Ta đi c/m bđt phụ : Với a,b > 1 thì \(\frac{1}{1+a}+\frac{1}{1+b}\ge\frac{2}{1+\sqrt{ab}}\)(1)

Bđt (1) \(\Leftrightarrow\frac{\left(a+b\right)+2}{1+\left(a+b\right)+ab}\ge\frac{2}{1+\sqrt{ab}}\)(Quy đồng VT)

           \(\Leftrightarrow\left(a+b\right)+2+\left(a+b\right)\sqrt{ab}+2\sqrt{ab}\ge2+2\left(a+b\right)+2ab\)

           \(\Leftrightarrow\left(a+b\right)\left(\sqrt{ab}-1\right)+2\sqrt{ab}\left(1-\sqrt{ab}\right)\ge0\)

         \(\Leftrightarrow\left(\sqrt{ab}-1\right)\left(a+b-2\sqrt{ab}\right)\ge0\)

          \(\Leftrightarrow\left(\sqrt{ab}-1\right)\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\)(Luôn đúng vs mọi a;b > 1)

Áp dụng bđt (1) được

\(\frac{1}{\left(1+a\right)^n}+\frac{1}{\left(1+b\right)^n}\ge2\left(\frac{\frac{1}{1+a}+\frac{1}{1+b}}{2}\right)^n\ge2\left(\frac{1}{1+\sqrt{ab}}\right)^n=\frac{2}{\left(1+\sqrt{ab}\right)^n}\)

Dấu "=" xảy ra tại a = b

Darlingg🥝
13 tháng 5 2019 lúc 17:44

Áp dụng  buổi thức đơn ta được

\(\sqrt[a]{b}\)\(a+b:2\)\(>\)ta được

\(\frac{1}{1+A}\)\(x = {-b \pm \sqrt{b^2-4ac} \over 2a}\)

\(\frac{A+B=2}{ }\)

\(\frac{A+B=2}{1+A+B}\)

\(VẬY\)Nếu bạn làm tắt theo mik thì

Mik chưa ra đáp án được vì

\(B\sqrt[A]{B}\)CHỖ B BỊ LỖI 

MAGICPENCIL,HÃY LUÔN :-)

Trung Hoàng
Xem chi tiết
Trí Tiên亗
25 tháng 2 2020 lúc 16:40

Bài này bạn chỉ cần chuyển vế biến đổi thôi là được , mình làm mẫu câu 2) :

\(\frac{a^2}{m}+\frac{b^2}{n}\ge\frac{\left(a+b\right)^2}{m+n}\)

\(\Leftrightarrow\frac{a^2n+b^2m}{mn}-\frac{\left(a+b\right)^2}{m+n}\ge0\)

\(\Leftrightarrow\frac{\left(m+n\right)\left(a^2n+b^2m\right)-\left(a^2+2ab+b^2\right).mn}{mn\left(m+n\right)}\ge0\)

\(\Leftrightarrow\frac{a^2mn+\left(bm\right)^2+\left(an\right)^2+b^2mn-a^2mn-2abmn-b^2mn}{mn\left(m+n\right)}\ge0\)

\(\Leftrightarrow\frac{\left(bm-an\right)^2}{mn\left(m+n\right)}\ge0\) ( luôn đúng )

Dấu "=" xảy ra \(\Leftrightarrow bm=an\)

Câu 3) áp dụng câu 2) để chứng minh dễ dàng hơn, ghép cặp 2 .

Khách vãng lai đã xóa
NBH Productions
Xem chi tiết
Nguyễn Duy Long
Xem chi tiết
LIVERPOOL
27 tháng 8 2017 lúc 9:45

bài 1

<=> \(\frac{bc}{a\left(a+b+c\right)+bc}\)

sử dụng tiếp cauchy sharws

Bài 2: đặt a=x/y, b=y/x, c=z/x

Không Cần Biết 2
Xem chi tiết
pham thi thu trang
Xem chi tiết
Khánh Ngọc
Xem chi tiết
khoa le nho
Xem chi tiết
khoa le nho
15 tháng 3 2020 lúc 11:05

Giúp mình 

Khách vãng lai đã xóa
Phùng Gia Bảo
15 tháng 3 2020 lúc 21:43

Không mất tính tổng quát giả sử \(a\ge b\ge c\). Khi đó, ta dễ dàng có được \(a^n\ge b^n\ge c^n\)và \(\frac{1}{b+c}\ge\frac{1}{c+a}\ge\frac{1}{a+b}\)

Áp dụng bất đẳng thức Chebyshev, ta có: \(\frac{a^n}{b+c}+\frac{b^n}{c+a}+\frac{c^n}{a+b}\ge\frac{1}{3}\left(a^n+b^n+c^n\right)\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right)\)

P/s: Đây là một bước nhỏ trong một cách chứng minh dạng tổng quát của bđt Nesbit

Khách vãng lai đã xóa
khoa le nho
16 tháng 3 2020 lúc 10:26

ủa trebyshev có dạng như vậy hả bạn 

Khách vãng lai đã xóa