rút gọn biểu thức
a/\(5^n+5^{n+2}\)
b/\(\frac{2}{3}\times3^n+3^{n-4}\)
Rút gọn các biểu thức:
a) \(5^n+5^{n+2}\)
b) \(\frac{2}{3}.3^n+3^{n-1}\)
a/ 5n + 5n+2
5nx1+5n x 52
5nx(52+1)
5nx(25+1)
5nx 26
rút gọn biểu thức sau
a) -3(n-1)+4(2+n)
b) 4(n-2)-3(5-n)
c)7(8-n)+8(n-5)
d) -7(2n-1)-3(n-2)
Rút gọn các biểu thức sau:
A =\(\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}\)
B =\(\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+...+\frac{1}{\sqrt{n-1}+\sqrt{n}}\)
Rút gọn các biểu thức
a, 5n+5n+2
b, \(\frac{2}{3}\)x3n+3n-1
Bài 1
a) thực hiện phép tính A=\(\frac{2^{12}\times3^5-4^6\times9^2}{\left(2^2\times3\right)^6+8^4\times3^5}-\frac{5^{10}\times7^3+25^5\times49^2}{\left(125\times7\right)^3+5^9\times14^3}\)
b) CMR: Với mọi số nguyên dương n thì:\(3^{n+2}-2^{n+2}+3^n-2^n\) chia hết cho 10
\(A=\frac{2^{12}.3^5-4^6.9^2}{\left(2^2.3\right)^6+8^4.3^5}-\frac{5^{10}.7^3+25^5.49^2}{\left(125.7\right)^3+5^9.14^3}\)
\(=\frac{2^{12}.3^5-2^{12}.3^4}{2^{12}.3^6+2^{12}.3^5}-\frac{5^{10}.7^3+5^{10}.7^4}{5^9.7^3+5^9.2^3.7^3}\)
\(=\frac{2^{12}.3^4\left(3-1\right)}{2^{12}.3^5\left(3+1\right)}-\frac{5^{10}.7^3\left(1+7\right)}{5^9.7^3\left(1+2^3\right)}\)
\(=\frac{2}{12}-\frac{5.8}{9}=\frac{1}{6}-\frac{40}{9}=\frac{-77}{18}\)
b ) 3n+2 - 2n+2 + 3n - 2n
= ( 3n+2 + 3n ) - ( 2n+2 + 2n )
= 3n ( 32 + 1 ) - 2n ( 22 + 1 )
= 3n.10 - 2n-1.2.5
= 3n.10 - 2n-1.10
= ( 3n - 2n-1 ).10 chia hết cho 10 ( đpcm )
Viết các biểu thức sau dưới dạng \(a^n\)(a thuộc Q, n thuộc N)
a) \(9\times3^3\times\frac{1}{81}\times3^2\)
b) \(4\times2^5\div\left(2^3\times\frac{1}{16}\right)\)
c) \(3^2\times2^5\times\left(\frac{2}{3}\right)^2\)
d) \(\left(\frac{1}{3}\right)^2\times\frac{1}{9}\times9^2\)
rút gọn biểu thức N= \(12\left(\sqrt{2}-3\sqrt{18}+212\sqrt{8}\right):\sqrt{2}\)
N=\(\frac{5-\sqrt{5}}{\sqrt{5-1}}-\frac{4}{\sqrt{5+1}}\)
Cho biểu thức N = \(\left(\dfrac{x^2}{x^2-y^2}+\dfrac{y}{x-y}\right):\dfrac{x^3-y^3}{x^5-x^4y-xy^4+y^5}\)
a. Rút gọn N
b. TÍnh giá trị của N biết xy = 1; x + y = 0
\(a,N=\dfrac{x^2+xy+y^2}{\left(x-y\right)\left(x+y\right)}\cdot\dfrac{\left(x-y\right)\left(x^4-y^4\right)}{\left(x-y\right)\left(x^2+xy+y^2\right)}\\ N=\dfrac{\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)}{\left(x-y\right)\left(x+y\right)}=x^2+y^2\\ b,N=\left(x+y\right)^2-2xy=0-2\cdot1=-2\)
Cho biểu thức N = \(\left(\dfrac{x^2}{x^2-y^2}+\dfrac{y}{x-y}\right):\dfrac{x^3-y^3}{x^5-x^4y-xy^4+y^5}\)
a. Rút gọn N
b. TÍnh giá trị của N biết xy = 1; x + y = 0
ĐKXĐ: \(x\ne y\)
a) \(N=\dfrac{x^2+y\left(x+y\right)}{\left(x-y\right)\left(x+y\right)}:\dfrac{\left(x-y\right)\left(x^2+xy+y^2\right)}{x^4\left(x-y\right)-y^4\left(x-y\right)}=\dfrac{x^2+xy+y^2}{\left(x-y\right)\left(x+y\right)}.\dfrac{\left(x-y\right)^2\left(x+y\right)\left(x^2+y^2\right)}{\left(x-y\right)\left(x^2+xy+y^2\right)}=x^2+y^2\)
b) \(x+y=0\Leftrightarrow\left(x+y\right)^2=0\Leftrightarrow x^2+y^2-2xy=0\)
\(\Leftrightarrow N=x^2+y^2=0+2xy=2.1=2\)