Cho A=2008.2007+2008
B=2006.2007.2008
Hỏi số nào là số chính phương
Chứng minh rằng:
a, Nếu n là tổng của hai số chính phương thì 2n cũng là tổng của hai số chính phương.
b, Nếu 2n là tổng của hai số chính phương thì n cũng là tổng của hai số chính phương.
c, Nếu n là tổng của hai số chính phương thì n2 cũng là tổng của hai số chính phương.
d, Nếu mỗi số m và n là tổng của hai số chính phương thì tích của mn cũng là tổng của hai số chính phương.
Cho n là tích của tất cả các số nguyên tố không vượt quá 1 số cho trước nào đó. Chứng minh rằng (n - 1) và (n + 1) đều ko thể là số chính phương.
Ta có: n = 2.3.5.7.11.13. ...
Dễ thấy n chia hết cho 2 và không chia hết cho 4.
-) Giả sử n+1 = a2, ta sẽ chứng minh điều này là không thể.
Vì n chẵn nên n+1 lẻ mà n+1= a2 nên a lẻ, giả sử a=2k+1, khi đó:
n+1=(2k+1)2 <=>n+1=4k2+4k+1 <=>n=4k2+4 chia hết cho 4, điều này không thể vì n không chi hết cho 4.
Vậy n+1 không chính phương.
-) Dễ thấy n chia hết cho 3 nên n-1 chia cho 3 sẽ dư 2 tức n=3k+2, điều này vô lý vì số chính phương có dạng 3k hoặc 3k+1.
Vậy n-1 không chính phương
(Hình như bài này của lớp 8 nha)
a) chứng minh rằng số có dạng n6 - n4 + 2n3 + 2n2 trong đó n > 1 và là số tự nhiên không phải là số chính phương.
b) giả sử N = 1.3.5.7...2009.2011
Chứng minh rằng trong 3 số nguyên liên tiếp 2N - 1, 2N, 2N + 1 không số nào là số chính phương.
Cho A là số có 4 chữ số và A là một số chính phương , nếu ta thêm vào mỗi chữ số của A một đơn vị thì ta được B và B cũng là 1 số chính phương . Tìm A và B
Nếu ta thêm vào mỗi chữ số của A 1 đơn vị thì số A sẽ tăng thêm 1111 đơn vị hay A + 1111 = B (1).
Đặt A = a2 và B = b2 với a,b thuộc N*.
Từ (1) => a2 + 1111 = b2 => b2 - a2 = 1111 => (a + b)(b - a) = 1111. (2)
Vì a, b thuộc N* nên a + b > b - a. (3) Ta có : 1111 = 11.101 (4)
Từ (2), (3) và (4) => a + b = 101 và b - a = 11. => a = 45 và b = 56.
=> A = 2025 và B = 3136.
hãy tìm tất cả các số có 2 chữ số là số chính phương?
(câu này mình hỏi xem thử có bạn nào nghĩ ra ko!!!...hihi)
4^2= 16
5^2= 25
6^2= 36
7^2= 49
8^2= 64
9^2= 81
nhe !
Các số chính phương có hai chữ số
1;4;9;16;25;36;49;64;81
lấy các số từ 1 đến 9 ra nhân lần lượt vs nó
Cho a là số gồm 2n chữ số 1, b là số gồm n+1 chữ số 1, c là số gồm n chữ số 6. Chứng minh rằng a+b+c+8 là số chính phương .
bài này mình làm trong vở ,mình đã chụp ảnh lại lời giải,bạn chịu khó mở trang của mình ra xem nha
Bạn tham khảo bài toán số 21 nha : https://olm.vn/hoi-dap/detail/11112433588.html
~ Học tốt ~
#)Giải :
Ta có :
\(a=111...11\)(2n chữ số 1)
\(b=111..11\)(n + 1 chữ số 1)
\(c=666...66\)(n chữ số 6)
\(\Rightarrow a+b+c+8=111...11+111...11+666...66+8\)
\(=\frac{10^{2n}-1}{9}+\frac{10^{n+1}-1}{9}+\frac{6\left(10^n-1\right)}{9}+\frac{72}{9}\)
\(=\frac{10^{2n}-1+10^{n+1}-1+6\left(10^n-1\right)+72}{9}\)
\(=\frac{\left(10^n\right)^2+10.10^n+6.10^n-6+70}{9}\)
\(=\frac{\left(10^n\right)^2+16.10^n+64}{9}=\left(\frac{10^n+8}{3}\right)^2\)
\(\Rightarrow a+b+c+8\)là số chính phương (đpcm)
tìm n để n2 +2006 là số chính phương
số chính phương là số có số mũ là 2
Bạn ơi bài này phải cho thêm điều kiện n thuộc Z
Đặt n^2+2006 = k^2 ( k thuộc N sao)
<=> -2006 = n^2-k^2 = (n-k).(n+k)
<=> n-k thuộc ước của -2006 ( vì n thuộc Z , k thuộc N sao nên n-k và n+k đểu thuộc Z)
Mà k thuộc N sao nên n-k < n+k
Từ đó, bạn tự giải bài toán nhưng nhớ kết hợp cả điều kiện n-k<n+k
Vì n2 là số chính phương
\(\Rightarrow\) n2 chia cho 4 dư 0 hoặc 1
Mà 2006 chia cho 4 dư 2
\(\Rightarrow\) n2 + 2006 chia cho 4 dư 2 hoặc 3
\(\Rightarrow\) n2 + 2006 không là số chính phương (vì số chính phương chia cho 4 dư 0 hoặc 1)
\(\Rightarrow\) Không có số n thỏa mãn đề bài.
Tìm một số chính phương có 2 chữ số sao cho mỗi chữ số đều là một số chính phương
Cho biểu thức A =1+19+93^2015+1993^2016 . Hỏi A có phải là số chính phương ko???
(Hình như A là số chính phương phải không các bạn , giải hộ mk vs)