cho :
A = 1 - 1/2 + 1/3 - 1/4 + ...+ 1/49 - 1/50 ; B = 1/25 + 1/26 + 1/27 +...+1/50
chứng minh A = B
cho A = 1/2 + 1/3 + 1/4 + ... +1/50
CHO C = 49/1 + 48/2 + 47/3 +...+ 2/48 + 1/49 = 50.A
chứng tỏ C không phải là số tự nhien
=> \(A=\frac{\left(\frac{49}{1}+\frac{48}{2}+...+\frac{1}{49}\right)}{50}=\frac{49}{50.1}+\frac{48}{50.2}+...+\frac{1}{50.49}\)
=> \(A=\frac{50-1}{50.1}+\frac{50-2}{50.2}+...+\frac{50-49}{50.49}\)
=> \(A=\left(\frac{50}{50.1}+\frac{50}{50.2}+...+\frac{50}{50.49}\right)-\left(\frac{1}{50.1}+\frac{2}{50.2}+...+\frac{49}{50.49}\right)\)
=> \(A=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{49}\right)-\left(\frac{1}{50}+\frac{1}{50}+...+\frac{1}{50}\right)\) ( có 49 số 1/50 )
=> \(A=1+\frac{1}{2}+...+\frac{1}{49}-\frac{49}{50}=\left(1-\frac{49}{50}\right)+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{49}\)
=> \(A=\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\)
Vậy A không phải là số tự nhiên
cho p=1/2+1/3+1/4+…+1/47+1/48+1/49+1/50
q=1/49+2/48+3/49+…47/3+48/2+49/1
tính p/q
cho A=1-1/2+1/3-1/4+1/5-1/6+...+1/49-1/50
Tính
1)A=1×2×3+2×3×4+.....+48×49×50
2)B=1×2+2×3+3×4+......+49×50
A = 1 × 2 × 3 + 2 × 3 × 4 + .....+ 48 × 49 × 50
ta có 4 x A = 1 x 2 x 3 x 4 + 2 x 3 x 4 x (5 -1) + .....+ 48 × 49 × 50 x (51 - 47)
= 1 x 2 x 3 x 4 + 2 x 3 x 4 x 5 - 1 x 2 x 3 x 4 + ... + 48 x 49 x 50 x 51 - 47 x 48 x 49 x 50
= 48 x 49 x 50 x 51
suy ra A = (48 x 49 x 50 x 51) : 4
= 12 x 49 x 50 x 51
nhớ k cho mik nha rùi mik lm nốt cho
A = 1 × 2 × 3 + 2 × 3 × 4 + .....+ 48 × 49 × 50
ta có 4 x A = 1 x 2 x 3 x 4 + 2 x 3 x 4 x (5 -1) + .....+ 48 × 49 × 50 x (51 - 47)
= 1 x 2 x 3 x 4 + 2 x 3 x 4 x 5 - 1 x 2 x 3 x 4 + ... + 48 x 49 x 50 x 51 - 47 x 48 x 49 x 50
= 48 x 49 x 50 x 51
suy ra A = (48 x 49 x 50 x 51) : 4
= 12 x 49 x 50 x 51
tính các tổng sau
A=1*2+2*3+3*4+4*5+5*6+6*7...+49*50
B=1*50+2*49+3*48+...+49*2+50*1
Cho \(A=\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{50};B=\dfrac{1}{49}+\dfrac{2}{48}+\dfrac{3}{47}+...+\dfrac{48}{2}+\dfrac{49}{1}\)
Tính giá trị của \(\dfrac{A}{B}\)
\(B=\dfrac{1}{49}+\dfrac{2}{48}+\dfrac{3}{47}+...+\dfrac{48}{2}+\dfrac{49}{1}\)
\(B=\left(\dfrac{1}{49}+1\right)+\left(\dfrac{2}{48}+1\right)+\left(\dfrac{3}{47}+1\right)+...+\left(\dfrac{48}{2}+1\right)+\dfrac{49}{1}\)
\(B=\left(\dfrac{50}{49}+\dfrac{50}{49}+\dfrac{50}{48}+\dfrac{50}{47}+...+\dfrac{50}{2}\right)+1\)
\(B=\dfrac{50}{50}+\dfrac{50}{49}+\dfrac{50}{49}+\dfrac{50}{48}+\dfrac{50}{47}+...+\dfrac{50}{2}\)
\(B=50\left(\dfrac{1}{50}+\dfrac{1}{49}+\dfrac{1}{48}+...+\dfrac{1}{2}\right)\)
\(\Rightarrow\dfrac{A}{B}=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{49}+\dfrac{1}{50}}{50\left(\dfrac{1}{50}+\dfrac{1}{49}+\dfrac{1}{48}+...+\dfrac{1}{2}\right)}=\dfrac{1}{50}\)
Cho A= 1-1/2+1/3-1/4+ 1/5-1/6+....+1/49-1/50. Chứng minh A< 5/6
B1. Rút gọn các phân số sau cho đến tối giản
49+7.49/49
B2.Cho A= 1/1^2+1/1^2+1/3^2+1/4^2+....+1/50^2. Chứng minh A<2
cho S = 1/2+1/3+1/4+...+1/49+1/50 và P = 1/49 +2/48+3/47+...+48/2+49/1.
tính S/P
Cho A=1-1/2+1/3-1/4+1/5-1/6+...+1/49-1/50.Chung minh A<5/6