Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đào Trí Bình
Xem chi tiết
Nguyễn Thị Phương Linh
16 tháng 11 2023 lúc 22:00

?

 

Lê Hồng Thái
Xem chi tiết
qwewe
Xem chi tiết
Vũ Minh Tuấn
4 tháng 4 2020 lúc 14:56

a) Ta có ^ABH + ^BAH = 90° Măt khác ^CAH + ^BAH = 90°
=> ^ABH = ^CAH
Xét ▲ABH và ▲CAK có:
^H = ^C (= 90°)
AB = AC (T.g ABC vuông cân)
^ABH = ^CAH (cmt)
=> △ABH = △CAK (c.h-g.n)
=> BH = AK
b) Ta có BH//CK (Cùng ┴ AK)
=>^HBM = ^MCK (SLT)(1)
Mặt khác ^MAE + ^AEM = 90°(2)
Và ^MCK + ^CEK = 90°(3)
Nhưng ^AEM = ^CEK (đ đ)(4)
Từ 2,3,4 => ^MAE = ^ECK (5)
Từ 1,5 => ^HBM = ^MAE
Ta lại có AM là trung tuyến của tam giác vuông ABC nên AM = BM =MC = 1/2 BC
Xét ▲MBH và ▲MAK có:
MB = AM (cmt); ^HBM = ^MAK(cmt); BH = AK (cma)
=> △MBH = △MAK (c.g.c)
c) Theo câu a, b ta có: AH = CK; MH = MK; AM = MC nên : ▲AMH = ▲ CMK (c.c.c)
=> ^AMH = ^CMK; mà ^AMH + ^HMC = 90 độ
=> ^CMK + ^HMC = 90° hay ^HMK = 90°
Tam giác HMK có MK = MH và ^HMK = 90° nên vuông cân tại M (đpcm).

Chúc bạn học tốt!

Khách vãng lai đã xóa
Tran Le Khanh Linh
4 tháng 4 2020 lúc 15:00

Bạn tham khảo tại link này nhé

https://h.vn/hoi-dap/question/192990.html

Câu hỏi của Lê Thị Thùy Dung - Toán lớp 7 | Học trực tuyến

Khách vãng lai đã xóa
²ᵏ⁷
4 tháng 4 2020 lúc 15:00

A B C M E K

a, BH = AK:

Ta có: ΔABC vuông cân tại A.

=> A1ˆ=A2ˆ=90oA1^=A2^=90o (1)

Cũng có: BH ⊥ AE.

=> ΔBAH vuông tại H.

=> B1ˆ+A2ˆ=90oB1^+A2^=90o (2)

Từ (1) và (2) => A1ˆ=B1ˆA1^=B1^.

Xét ΔBAH và ΔACK có:

+ AB = AC (ΔABC cân)

H1ˆ=K1ˆ=90oH1^=K1^=90o (CK ⊥ AE, BH ⊥ AE)

A1ˆ=B1ˆ=(cmt)A1^=B1^=(cmt)

=> ΔBAH = ΔACK (cạnh huyền - góc nhọn)

=> BH = AK (2 cạnh tương ứng)

b, ΔMBH = ΔMAK:

Ta có: BH ⊥ AK; CK ⊥ AE.

=> BH // CK.

=> HBMˆ=MCKˆHBM^=MCK^ (2 góc so le trong) [1]

Mà MAEˆ+AEMˆ=90oMAE^+AEM^=90o [2]

Và MCKˆ+CEKˆ=90oMCK^+CEK^=90o [3]

AEMˆ=CEKˆAEM^=CEK^ (đối đỉnh) [4]

Từ [1], [2], [3] và [4] => MAEˆ=ECKˆMAE^=ECK^ [5]

Từ [1] và [5] => HBMˆ=MAKˆHBM^=MAK^.

Ta có: AM là trung tuyến của tam giác vuông ABC nên AM = BM = MC = 1212BC.

Xét ΔMBH và ΔMAK có:

+ MA = MB (cmt)

HBMˆ=MAKˆHBM^=MAK^ (cmt)

+ BH = AK (câu a)

=> ΔMBH = ΔMAK (c - g - c)

c, ΔMHK vuông cân:

Xét ΔAMH và ΔCMK có:

+ AH = CK (ΔABH = ΔCAK)

+ MH = MK (ΔMBH = ΔMAK)

+ AM = CM (AM là trung tuyến)

=> ΔAMH = ΔCMK (c - c - c)

=> AMHˆ=CMKˆAMH^=CMK^ (2 góc tương ứng)

mà AMHˆ+HMCˆ=90oAMH^+HMC^=90o

=> CMKˆ+HMCˆ=90oCMK^+HMC^=90o

hay HMKˆ=90oHMK^=90o.

ΔHMK có MK = MH và MHKˆ=90oMHK^=90o.

=> ΔHMK vuông cân tại M.

Khách vãng lai đã xóa
Thaomy
Xem chi tiết
Trần Ngọc Giang
23 tháng 2 2018 lúc 21:37

bài này cũng khó phết đấy

Vũ Thị Ngọc Huyền
19 tháng 6 2019 lúc 18:46

bài này mk nghĩ mấy tiếng còn không ra phải lên mạng mà xem

Mạnh Nguyễn
27 tháng 12 2019 lúc 20:43

a) Ta có : ^BAK+^KAC=90 độ (1)

^HBA+^BAH ( hay ^BAK)=90 độ (2)

Từ (1) và (2)=> ^KAC=^HBA ( vì đều bằng 90 độ - ^BAK )

Xét 🔺BHA và 🔺AKC có :

^BHA = ^AKC = 90 độ

AB=AC ( vì 🔺ABC vuông cân ở A )

^KAC = ^HBA ( chứng minh trên )

Suy ra 🔺BHA = 🔺AKC ( cạnh huyền - góc nhọn )

=> BH = AK ( 2 góc tương ứng )

hình bn tự vẽ nhé 

>>>Hok Tốt<<<

Khách vãng lai đã xóa
Biokgnbnb
Xem chi tiết
cấn mai anh
Xem chi tiết
lien nguyen
Xem chi tiết
Nguyễn Ngọc Vy :3
Xem chi tiết
Phan Lê Anh Thư
Xem chi tiết
OoO Kún Chảnh OoO
13 tháng 2 2016 lúc 10:18

câu a/ 

xét tam giác ABH và CAK có:

góc AHB=góc AEC=90;AB=AC;góc ABH=góc CAE(cùng phụ với góc  BAE)

=> tam giác ABH=CAK(cạnh huyền- góc nhọn)=>BH=AK

câu b/

tam giác ABC vuông cân; M là trung điểm của BC=>AM=BM=CM

xét tam giác BMH và AMK có

góc MBH=MAK(cùng phụ với góc BEH); BH=AK(cmt); BM=AM(cmt)

=>tam giác bằng nhau

Câu c/

theo câu b/ => MH=MK(2 cạnh tương ứng)(1)

Xét tam giác AHM và CEM có

AH=CE(tam giác ABH=CEK); MH=MK(cmt); AM=MC(cmt)

=> tam giác bằng nhau=>góc AMH= góc CMK

mà góc AMH+góc EMH=90

=>góc HME+gócCMK=90

=>góc HMK=90(2)

từ (1)(2)=> tam giác MHK vuông cân