tìm GTNN của biểu thức E=|x+17|+|x+4|+|x+2018| then kiu nha bn
c3: cho x+y=15, tìm giá tị nhỏ nhất , lớn nhất của biểu thức:
B=căn (x-4) + căn (y-3)
c4: tìm GTNN của biểu thức A= (2x^2 - 6x + 5) / 2x
c5: cho a, b, x là những số dương. tìm GTNN của :
P= [(x+a)(x+b)]/x
C3 : Ta có ; \(B=\sqrt{x-4}+\sqrt{y-3}\) . Nhận xét : \(B\ge0\)
Áp dụng bất đẳng thức Bunhiacopxki : \(B^2=\left(1.\sqrt{x-4}+1.\sqrt{y-3}\right)^2\le\left(1^2+1^2\right)\left(x-4+y-3\right)\)\(\Rightarrow B^2\le16\Rightarrow B\le4\). Dấu "=" xảy ra khi và chỉ khi \(\hept{\begin{cases}x\ge4,y\ge3\\\sqrt{x-4}=\sqrt{y-3}\\x+y=15\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=8\\y=7\end{cases}}\)
Vậy B đạt giá trị lớn nhất bằng 4 tại (x;y) = (8;7)
Tìm GTNN và mấy bài tới để từ từ mình làm cho nhé , tại mạng đang chậm...
C4 : Bạn cần thêm điều kiện x là số dương nhé : )
Ta có ; \(A=\frac{2x^2-6x+5}{2x}=x+\frac{5}{2x}-3\). Áp dụng bất đẳng thức Cauchy :
\(x+\frac{5}{2x}\ge2\sqrt{x.\frac{5}{2x}}=\sqrt{10}\). Dấu "=" xảy ra \(\Leftrightarrow x=\frac{5}{2x}\Leftrightarrow\sqrt{\frac{5}{2}}\)
Vậy Min A = \(\sqrt{10}-3\Leftrightarrow x=\sqrt{\frac{5}{2}}\)
C5 : Bạn cần thêm điều kiện a,b là hằng số nhé :)
\(P=\frac{\left(x+a\right)\left(x+b\right)}{x}=\frac{x^2+ax+bx+ab}{x}=x+\frac{ab}{x}+a+b\)
Áp dụng bất đẳng thức Cauchy : \(x+\frac{ab}{x}\ge2\sqrt{x.\frac{ab}{x}}=2\sqrt{ab}\Rightarrow P\ge a+2\sqrt{ab}+b=\left(\sqrt{a}+\sqrt{b}\right)^2\)
Dấu "=" xảy ra khi và chỉ khi \(x^2=ab\Leftrightarrow x=ab\) (vì a,b,x > 0)
Vậy .......
1Tìm GTLN của biểu thức
a)/x+7/+2018
b)/x-1/+/y+3/-2012
2.Tìm GTNH của biểu thức
a)-/+4/+2018
b)93-/x+7/.
VÌ x +7 >,= 0 với mọi x
=> ( x+7) + 2018 > , = 2018 VỚI MỌI X
hay A >,= 2018 VỚI MỌI X
MAX = 2018 VỚI MỌI X
<=> x+ 7 = 0
=> x= -7
vậy max = 2018 <=> x= -7
Tìm GTLN hoặc GTNN của các biểu thức:
a, A=2x^2-2
b, B=|x+1/3|-1/6
c, C=|x|+2017/2018
d, D=3-(x+1)^2
e, E=-|0,1+x|-1,9
f, F=1/|x|+2017
em xét dấu trị tuyệt đối với mũ 2 nhé
c12 cho 0<x<1 tìm GTNN của biểu thức B= 3/(1-x) + 4/x
gọi biểu thức ban đầu là B
xét biểu thức phụ
Q=3x/(1-x)+(4-4x)/x
do 0<x<1 nên 3x/(x-1)>0 và (4-4x)/x>0
áp dụng bđt cosy cho 2 số trên ta được :
3x/(1-x)+(4-4x)/x ≥2√(3x/(1-x)*(4-4x)/x)=2√12=4√3
dấu = xảy ra khi và chỉ khi 3x/(1-x)=(4-4x)/x và 0<x<1
suy ra 3x/(1-x)=4*(1-x)/x
suy ra 4*(1-x)^2=3x^2
suy ra |1-x|=√(3x^2/4)
suy ra 1-x=x√3/2
suy ra x=-2√3+4
lại có B-Q=3/(1-x)+4/x-3x/(1-x)-(4-4x)/x=7(bạn tự giải ra giùm mình nhé)
suy ra gtnn B=7+Q=7+4√3
dấu bằng xảy ra khi x=-2√3+4
Xét biểu thức phụ B=3x1−x+4−4xxB=3x1−x+4−4xx
Vì 0<x<1→⎧⎪ ⎪⎨⎪ ⎪⎩3x1−x>04−4xx>00<x<1→{3x1−x>04−4xx>0
AD BĐT Cô-si cho 2 số dương ta được:
B=3x1−x+4−4xx≥2√3x1−x.4−4xx=2√12=4√3B=3x1−x+4−4xx≥23x1−x.4−4xx=212=43
Dấu "=" xảy ra ↔⎧⎨⎩3x1−x=4−4xx0<x<1↔{3x1−x=4−4xx0<x<1
↔{4(1−x)2=3x20<x<1↔{4(1−x)2=3x20<x<1
↔⎧⎪⎨⎪⎩|1−x|=√3x240<x<1↔{|1−x|=3x240<x<1
↔⎧⎪⎨⎪⎩1−x=x√320<x<1↔{1−x=x320<x<1
↔x=−2√3+4↔x=−23+4
Lại có:Q−B=31−x+4x−3x1−x−4−4xx=7Q−B=31−x+4x−3x1−x−4−4xx=7
→QMIN=7+BMIN=7+4√3→QMIN=7+BMIN=7+43
Dấu "=" xảy ra ↔x=−2√3+4↔x=−23+4
gọi biểu thức ban đầu là B
xét biểu thức phụ
Q=3x/(1-x)+(4-4x)/x
do 0<x<1 nên 3x/(x-1)>0 và (4-4x)/x>0
áp dụng bđt cosy cho 2 số trên ta được :
3x/(1-x)+(4-4x)/x ≥2√(3x/(1-x)*(4-4x)/x)=2√12=4√3
dấu = xảy ra khi và chỉ khi 3x/(1-x)=(4-4x)/x và 0<x<1
suy ra 3x/(1-x)=4*(1-x)/x
suy ra 4*(1-x)^2=3x^2
suy ra |1-x|=√(3x^2/4)
suy ra 1-x=x√3/2
suy ra x=-2√3+4
lại có B-Q=3/(1-x)+4/x-3x/(1-x)-(4-4x)/x=7(bạn tự giải ra giùm mình nhé)
suy ra GTNN B=7+Q=7+4√3
dấu "=" xảy ra khi zà chỉ khi
x=-2√3+4
hacker 2k6
Tìm GTNN của biểu thức sau:
Q = |x+43|+|x-54|+|28+x|
cho x>0 tìm GTNN của biểu thức N=(x^3+2000)/x
\(N=x^2+\frac{1000}{x}+\frac{1000}{x}\ge3\sqrt[3]{1000.1000}=300\)
dấu = khi x=10
\(\frac{4\sqrt{x}}{x+2\sqrt{x}+1}\)
tìm gtnn của biểu thức
ta có ĐK là x>=0
ta có \(4\sqrt{x}\ge0;x+2\sqrt{x}+1>0\Rightarrow\) \(\frac{4\sqrt{x}}{x+2\sqrt{x}+1}\ge0\)
dấu = xảy ra <=> x= 0,
A = (x4+5)2
Tìm GTNN của biểu thức
Ta có: x4 \(\ge\)0 \(\forall\)x
=> x4 + 5 \(\ge\)5 \(\forall\)x
=> (x4 + 5)2 \(\ge\)25 \(\forall\)x
Dấu "=" xảy ra <=> x = 0
Vậy Min của A = 25 tại x = 0
\(A=\left(x^4+5\right)^2=x^8+10x^4+25=x^4\left(x^4+10\right)+25\)
Vì \(x^4\ge0\)và \(x^4+10>0\)
\(\Rightarrow B_{min}=25\Leftrightarrow x^4\left(x^4+10\right)=0\)
\(\Rightarrow\hept{\begin{cases}x^4=0\\x^4+10=0\end{cases}\Rightarrow\hept{\begin{cases}x=0\\x\in\varnothing\end{cases}}}\)
\(KL:B_{min}=25\Leftrightarrow x=0\)
Tìm GTNN của biểu thức A=13*x2+y2+4*x*y-2*y-16*x+2015