Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Minh Đức
Xem chi tiết
Cong chua anh trang
20 tháng 5 2017 lúc 18:44

Sorry nha , em ko bt làm đâu , em mới học lớp 5 thui

Hoàng Anh Tú
20 tháng 5 2017 lúc 20:15

sory nha ae cũng ko biết làm đâu... em mới lên lớp 6 thôi

Hoàng Anh Tú
20 tháng 5 2017 lúc 20:17

bạn chỉ cần bình phương lên là ok ngay mà......... lên bậc 4 r nhờ máy tính là xg

SoSs
Xem chi tiết
Nguyễn Đức Việt
Xem chi tiết
Akai Haruma
29 tháng 4 2023 lúc 16:10

Bài 1: ĐKXĐ: $2\leq x\leq 4$
PT $\Leftrightarrow (\sqrt{x-2}+\sqrt{4-x})^2=2$

$\Leftrightarrow 2+2\sqrt{(x-2)(4-x)}=2$
$\Leftrightarrow (x-2)(4-x)=0$

$\Leftrightarrow x-2=0$ hoặc $4-x=0$

$\Leftrightarrow x=2$ hoặc $x=4$ (tm)

Akai Haruma
29 tháng 4 2023 lúc 16:47

Bài 2:
PT $\Leftrightarrow 4x^3(x-1)-3x^2(x-1)+6x(x-1)-4(x-1)=0$

$\Leftrightarrow (x-1)(4x^3-3x^2+6x-4)=0$
$\Leftrightarrow x=1$ hoặc $4x^3-3x^2+6x-4=0$

Với $4x^3-3x^2+6x-4=0(*)$

Đặt $x=t+\frac{1}{4}$ thì pt $(*)$ trở thành:
$4t^3+\frac{21}{4}t-\frac{21}{8}=0$

Đặt $t=m-\frac{7}{16m}$ thì pt trở thành:

$4m^3-\frac{343}{1024m^3}-\frac{21}{8}=0$
$\Leftrightarrow 4096m^6-2688m^3-343=0$

Coi đây là pt bậc 2 ẩn $m^3$ và giải ta thu được \(m=\frac{\sqrt[3]{49}}{4}\) hoặc \(m=\frac{-\sqrt[3]{7}}{4}\)

Khi đó ta thu được \(x=\frac{1}{4}(1-\sqrt[3]{7}+\sqrt[3]{49})\)

 

Nguyễn Đức Việt
29 tháng 4 2023 lúc 17:11

Nãy mình tìm được một cách giải tương tự cho câu 2.

PT \(\Leftrightarrow\left(x-1\right)\left(4x^3-3x^2+6x-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\4x^3-3x^2+6x-4=0\left(1\right)\end{matrix}\right.\)

Vậy pt có 1 nghiệm bằng 1.

\(\left(1\right)\Rightarrow8x^3-6x^2+12x-8=0\)

\(\Leftrightarrow7x^3+x^3-6x^2+12x-8=0\)

\(\Leftrightarrow\left(x-2\right)^3=-7x^3\)

\(\Leftrightarrow x-2=-\sqrt[3]{7}x\)

\(\Leftrightarrow x=\dfrac{2}{1+\sqrt[3]{7}}\)

Vậy pt có nghiệm \(S=\left\{1;\dfrac{2}{1+\sqrt[3]{7}}\right\}\)

Lưu ý: Nghiệm của người kia hoàn toàn tương đồng với nghiệm của mình (\(\dfrac{2}{1+\sqrt[3]{7}}=\dfrac{1}{4}\left(1-\sqrt[3]{7}+\sqrt[3]{49}\right)\))

Thiên Phong
Xem chi tiết
phan tuấn anh
16 tháng 10 2016 lúc 21:11

sao đề nhìn bá vậy bạn ...

Tiểu Nghé
16 tháng 10 2016 lúc 21:45

bài này chắc đặt \(\sqrt{x^3-3x+6}\)cho nó gọn thôi

Thiên Phong
Xem chi tiết
TFBoys
Xem chi tiết
Akai Haruma
28 tháng 5 2019 lúc 1:02

Lời giải:
PT \(\Leftrightarrow \sqrt{2(x^4+4+4x^2-4x^2)}=3x^2-10x+6\)

\(\Leftrightarrow \sqrt{2[(x^2+2)^2-(2x)^2]}=3x^2-10x+6\)

\(\Leftrightarrow \sqrt{2(x^2+2-2x)(x^2+2+2x)}=3x^2-10x+6\)

Đặt \(\sqrt{2(x^2+2-2x)}=a; \sqrt{x^2+2+2x}=b(a,b\geq 0)\). Khi đó pt đã cho trở thành:

\(ab=2a^2-b^2\)

\(\Leftrightarrow 2a^2-ab-b^2=0\)

\(\Leftrightarrow (a-b)(2a+b)=0\Rightarrow \left[\begin{matrix} a-b=0\\ 2a+b=0\end{matrix}\right.\)

Nếu \(a-b=0\Leftrightarrow a=b\Rightarrow a^2=b^2\)

\(\Leftrightarrow 2x^2-4x+4=x^2+2+2x\)

\(\Leftrightarrow x^2-6x+2=0\Rightarrow x=3\pm \sqrt{7}\) (đều thỏa mãn)

Nếu \(2a+b=0\). Vì $a,b\geq 0$ nên điều này xảy ra khi $a=b=0$

\(\Leftrightarrow \sqrt{2x^2-4x+4}=\sqrt{x^2+2x+2}=0\) (không tìm được $x$ thỏa mãn)

Vậy........

poppy Trang
Xem chi tiết
Nguyễn Trung Hiếu
Xem chi tiết
ngonhuminh
17 tháng 1 2017 lúc 16:58

Nhìn không đủ chán rồi không dám động vào

Vũ Như Mai
17 tháng 1 2017 lúc 17:05

Viết đề kiểu gì v @@

Vũ Như Mai
17 tháng 1 2017 lúc 17:12

À do nãy máy lag sr :) Chứ bài đặt ẩn phụ mệt lắm :)

Nguyễn Hoàng Minh
Xem chi tiết