cho 3 số a,b,c thỏa mãn abc=2019. tính A=2019a/ab+2019a+2019 + b/bc +c+2019 + c/ac+c+2019
cho 3 số a,b,c thỏa mãn abc=2019. tính A=2019a/ab+2019a+2019 + b/bc +c+2019 + c/ac+c+2019
cho 3 số a,b,c thỏa mãn abc =2005.Tính P=(2019a/ab+2019a+2019)+(b/bc +b +2079)+(c/ac+c+1)
cho a,b,c thoả mãn abc=2019
tính P= 2019a^2bc/ab+2019a+2019
+ ab^2c/bc+b+2019
+ abc^2/ ac+c+1
cho 3 số a,b,c thỏa mãn abc =2005.Tính P=(2019a/ab+2019a+2019)+(b/bc +b +2079)+(c/ac+c+1)
a)Cho 3 số a,b,c thỏa mãn abc=2019. Tính giá trị biểu thức:
M=\(\frac{2019a}{ab+2019a+2019}+\frac{b}{bc+b+2019}+\frac{c}{ac+c+1}\)
b)Cho b,c ≠0 và a+b+c=abc và \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2\)
Cminh \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=2\)
Có: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2\)
\(\Rightarrow\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=4\)
\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2.\left(\frac{1}{ab}+\frac{1}{ac}+\frac{1}{cb}\right)=4\)
\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2.\left(\frac{a+b+c}{abc}\right)=4\)
\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2.\left(\frac{abc}{abc}\right)=4\)
\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2=4\)
\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=2\)
đpcm
\(M=\frac{2019a}{ab+2019a+2019}+\frac{b}{bc+b+2019}+\frac{c}{ca+c+1}\)
\(M=\frac{abc.a}{ab+abc.a+abc}+\frac{b}{bc+b+abc}+\frac{c}{ca+c+1}\)
\(M=\frac{ca}{1+ca+c}+\frac{1}{c+1+ac}+\frac{c}{ca+c+1}\)
\(M=\frac{ca+a+1}{1+ca+c}\)
\(M=1\)
Cho a,b,c>0 thỏa mãn a+b+c=2019
Chứng minh rằng \(\frac{a}{a+\sqrt{2019a+bc}}+\frac{b}{b+\sqrt{2019b+ac}}+\frac{c}{c+\sqrt{2019c+ab}}\le1\)
Ta có: \(2019a+bc=a\left(a+b+c\right)+bc=\left(a+b\right)\left(c+a\right)\ge\left(\sqrt{ab}+\sqrt{ac}\right)^2\)
\(\Rightarrow a+\sqrt{2019a+bc}\ge a+\sqrt{ab}+\sqrt{bc}=\sqrt{a}\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)\)
\(\Rightarrow\frac{a}{a+\sqrt{2019a+bc}}\le\frac{a}{\sqrt{a}\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)}=\frac{\sqrt{a}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}\)
Tương tự cộng vào suy ra điều phải chứng minh
Tìm giá trị nhỏ nhất của biểu thức:
T=\(\dfrac{a}{a+\sqrt{2019a+bc}}+\dfrac{b}{b+\sqrt{2019b+ac}}+\dfrac{c}{c+\sqrt{2019c+ab}}\)
Cho a,b,c>0 thỏa a+b+c=2019
Tìm GTNN của\(P=\frac{a}{a+\sqrt{2019a+bc}}+\frac{b}{b+\sqrt{2019b+ac}}+\frac{c}{c+\sqrt{2019c+ab}}\)
MONG CÁC BẠN ZẢI NHANH GIÚP VÌ MÌNH VÌ MÌNH ĐANG CẦN GẤP
Sửa đề: GTLN
Áp dụng BĐT Cauchy-Schwarz ta có:
\(\frac{a}{a+\sqrt{2019a+bc}}=\frac{a}{a+\sqrt{a\left(a+b+c\right)+bc}}=\frac{a}{a+\sqrt{a^2+ab+ca+bc}}\)
\(=\frac{a}{a+\sqrt{\left(a+b\right)\left(a+c\right)}}\le\frac{a}{a+\sqrt{\left(\sqrt{ab}+\sqrt{ac}\right)^2}}\)
\(=\frac{a}{a+\sqrt{ab}+\sqrt{ac}}=\frac{\sqrt{a}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}\)
Tương tự cho 2 BĐT còn lại ta cũng có:
\(\frac{b}{b+\sqrt{2019b+ac}}\le\frac{\sqrt{b}}{\sqrt{a}+\sqrt{b}+\sqrt{c}};\frac{c}{c+\sqrt{2019c+ab}}\le\frac{\sqrt{c}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}\)
Cộng theo vế 3 BĐT trên ta có:
\(P\le\frac{\sqrt{a}+\sqrt{b}+\sqrt{c}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}=1\)
Cho 3 số thực a,b,c > 0 thỏa mãn a+b+c= 2019 . CMR :
\(\dfrac{a}{a+\sqrt{2019a+bc}}\) + \(\dfrac{b}{b+\sqrt{2019b+ca}}\) + \(\dfrac{c}{c+\sqrt{2019c+ab}}\) \(\le\)1
Ta có
\(\sum\dfrac{a}{a+\sqrt{2019a+bc}}=\sum\dfrac{a}{a+\sqrt{a^2+a\left(b+c\right)+bc}}\)
Áp dụng AM - GM : \(b+c\ge2\sqrt{bc}\)
\(\Rightarrow\sum\dfrac{a}{a+\sqrt{a^2+a\left(b+c\right)+bc}}\le\dfrac{a}{a+\sqrt{a^2+2a\sqrt{bc}+bc}}\)
\(=\sum\dfrac{a}{a+\sqrt{\left(a+\sqrt{bc}\right)^2}}=\sum\dfrac{a}{a+a+\sqrt{bc}}\)
Tự làm tiếp