Chuwngs minh A=\(\frac{1}{3}\)+\(\frac{2}{9}\)+\(\frac{3}{27}\)+...+\(\frac{100}{3^{100}}\)>\(\frac{3}{4}\)
1 CMR:
B=\(\frac{4}{3}+\frac{7}{3^2}+\frac{10}{3^3}+.....+\frac{3n+1}{3^n}< \frac{11}{4}\)(n thuộc N*;n>3)
A=\(\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{100}{3^{100}}< \frac{3}{4}\)
C=\(\frac{2}{3}+\frac{8}{9}+\frac{26}{27}+...+\frac{3^{20}-1}{3^{20}}>19\frac{1}{2}\)
Có : \(3A=1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{100}{3^{99}}\)
\(3A-A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}-\frac{100}{3^{100}}\)
\(\Rightarrow2A< 1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}\)
Có: \(6A< 3+1+\frac{1}{3}+...+\frac{1}{3^{98}}\)
\(6A-2A< 3-\frac{1}{3^{99}}< 3\)
\(\Rightarrow4A< 3\Rightarrow A< \frac{3}{4}\)(đpcm)
chứng minh rằng:
a) A= \(\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+\frac{7}{3^2.4^2}+...+\frac{19}{9^2.10^2}\)<1
b)B=\(\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+\frac{4}{4^4}+...+\frac{100}{3^{100}}< \frac{3}{4}\)
\(A=\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+\frac{7}{3^2.4^2}+....+\frac{19}{9^2.10^2}\)
\(A=\frac{3}{1.4}+\frac{5}{4.9}+\frac{7}{9.16}+....+\frac{19}{81.100}\)
\(A=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{9}+\frac{1}{9}-\frac{1}{16}+....+\frac{1}{81}-\frac{1}{100}\)
\(A=1-\frac{1}{100}=\frac{99}{100}< 1\)
\(\Rightarrow A< 1\text{(đpcm) }\)
\(\frac{200-\left(3+\frac{2}{3}+\frac{2}{4}+\frac{2}{5}+.......+\frac{2}{100}\right)}{\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+......+\frac{9}{100}}\)
Chứng minh = 2
Đặt A là tên biểu thức trên
Ta có: \(A=\frac{200-\left(3+\frac{2}{3}+\frac{2}{4}+\frac{2}{5}+...+\frac{2}{100}\right)}{\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+...+\frac{99}{100}}\)
\(A=\frac{200-2\left(\frac{3}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{100}\right)}{\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{3}\right)+\left(1-\frac{1}{4}\right)+....+\left(1-\frac{1}{100}\right)}\)
\(A=\frac{2\left[100-\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{100}\right)\right]}{100-\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\right)}\)
\(A=2\)
CMR
a)A=\(\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+....+\frac{100}{3^{100}}< \frac{3}{4}\)
b)B=\(\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+.....+\frac{100}{4^{100}}< \frac{4}{9}\)
Chứng minh rằng : A= \(\frac{1}{2}+\frac{2}{2^2}+\frac{3}{2^3}-\frac{4}{2^4}+....+\frac{99}{2^{99}}-\frac{100}{2^{100}}< \frac{2}{9}\)\(\frac{2}{9}\)
Chuứng minh rằng:
A=\(\frac{1}{2}-\frac{2}{2^2}+\frac{3}{2^3}-\frac{4}{2^4}+.....+\frac{99}{2^{99}}-\frac{100}{^{ }2^{100}}< \frac{2}{9}\)
Cho biểu thức B = \(\frac{4}{3}+\frac{10}{9}+\frac{28}{27}+...+\frac{3^{98}+1}{3^{98}}.\).Chứng minh B <100
= \(1+\frac{1}{3}+1+\frac{1}{9}+1+\frac{1}{27}+...+1+\frac{1}{3^{98}}\)\(\frac{1}{3^{98}}\)
\(=1.98+\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{98}}\right)\)
Đặt A=\(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{98}}\)
\(\Rightarrow3A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{97}}\)
\(\Rightarrow3A-A=2A=1-\frac{1}{3^{98}}\Rightarrow A=\frac{1-\frac{1}{2^{98}}}{2}< 1\)
\(\Rightarrow B=98+A< 98+1< 99< 100\)
\(\Rightarrow B< 100\)
Cho biểu thức: B =\(\frac{4}{3}+\frac{10}{9}+\frac{28}{27}+...\frac{3^{98}+1}{3^{98}}\). Chứng minh B < 100.
chung minh rang A=\(\frac{1}{2}-\frac{2}{2^2}+\frac{3}{2^3}-\frac{4}{2^4}+...+\frac{99}{2^{99}}-\frac{100}{2^{100}}<\frac{2}{9}\)
dễ mà mình làm hoài hà bạn nhân A cho \(\frac{1}{3}\)rồi sau đó cộng A và \(\frac{1}{3}\times A\) lại tiếp theo tự tính