Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Hoàng Phương Anh
Xem chi tiết
Lê Anh Duy
30 tháng 3 2017 lúc 22:35

Khó dữ vậy!!!!

thánh yasuo lmht
6 tháng 5 2017 lúc 14:49

Đợi tí , mạng chậm

thánh yasuo lmht
6 tháng 5 2017 lúc 21:54

Có : \(3A=1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{100}{3^{99}}\)

\(3A-A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}-\frac{100}{3^{100}}\)

\(\Rightarrow2A< 1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}\)

Có: \(6A< 3+1+\frac{1}{3}+...+\frac{1}{3^{98}}\)

\(6A-2A< 3-\frac{1}{3^{99}}< 3\)

\(\Rightarrow4A< 3\Rightarrow A< \frac{3}{4}\)(đpcm)

Lê Phương Uyên
Xem chi tiết
Đức Phạm
19 tháng 7 2017 lúc 13:54

\(A=\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+\frac{7}{3^2.4^2}+....+\frac{19}{9^2.10^2}\)

\(A=\frac{3}{1.4}+\frac{5}{4.9}+\frac{7}{9.16}+....+\frac{19}{81.100}\)

\(A=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{9}+\frac{1}{9}-\frac{1}{16}+....+\frac{1}{81}-\frac{1}{100}\)

\(A=1-\frac{1}{100}=\frac{99}{100}< 1\)

\(\Rightarrow A< 1\text{(đpcm) }\)

Trần Văn Khánh Hoàng
Xem chi tiết
ST
2 tháng 5 2017 lúc 21:51

Đặt A là tên biểu thức trên

Ta có: \(A=\frac{200-\left(3+\frac{2}{3}+\frac{2}{4}+\frac{2}{5}+...+\frac{2}{100}\right)}{\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+...+\frac{99}{100}}\)

\(A=\frac{200-2\left(\frac{3}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{100}\right)}{\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{3}\right)+\left(1-\frac{1}{4}\right)+....+\left(1-\frac{1}{100}\right)}\)

\(A=\frac{2\left[100-\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{100}\right)\right]}{100-\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\right)}\)

\(A=2\)

Do minh linh trang
Xem chi tiết
vũ linh trang
Xem chi tiết
Mai Thi Cam Nhung
Xem chi tiết
Công chúa Lọ Lem
Xem chi tiết
Mostost Romas
30 tháng 4 2017 lúc 8:40

\(1+\frac{1}{3}+1+\frac{1}{9}+1+\frac{1}{27}+...+1+\frac{1}{3^{98}}\)\(\frac{1}{3^{98}}\)

\(=1.98+\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{98}}\right)\)

Đặt A=\(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{98}}\)

\(\Rightarrow3A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{97}}\)

\(\Rightarrow3A-A=2A=1-\frac{1}{3^{98}}\Rightarrow A=\frac{1-\frac{1}{2^{98}}}{2}< 1\)

\(\Rightarrow B=98+A< 98+1< 99< 100\)

\(\Rightarrow B< 100\)

Nguyễn Vũ Phong
Xem chi tiết
Vua Hải Tặc Vàng
Xem chi tiết
Phan Thị Hà Vy
8 tháng 4 2016 lúc 19:54

dễ mà mình làm hoài hà bạn nhân A cho \(\frac{1}{3}\)rồi sau đó cộng A và \(\frac{1}{3}\times A\) lại tiếp theo tự tính