Chứng minh rằng: Nếu a, b, c >0 thì a/(b + c) + b(c+a)+ c/(b + a) >=3/2
Cho a^2+b^2+c^2+3= 2(a+b+c). Chứng minh a=b=c=1
2. Chứng minh rằng nếu a+b+c=0 thì a^3+b^3+c^3=3abc
Bài 4: Chứng minh rằng: -(a-b-c)+(-a+b-c)-(-a+b+c)=-(a-b+c)
Bài 5: Cho M=(-a+b)-(b+c-a)+(c-a) Chứng minh rằng: Nếu a<0 thì M>0
Mình cần gấp ạ!
\(4,VT=-a+b+c-a+b-c+a-b-c=-a+b-c=-\left(a-b+c\right)=VP\\ 5,M=-a+b-b-c+a+c-a=-a\\ M>0\Rightarrow-a>0\Rightarrow a< 0\)
Chứng minh rằng nếu a/b=b/c thì a^2+b^2/b^2+c^2 = a/c (b,c khác 0 )
Áp dụng tính chất dãy tỉ số bằng nhau , ta có :
\(\frac{a}{b}=\frac{b}{c}\Rightarrow\frac{a^2}{b^2}=\frac{b^2}{c^2}=\frac{a^2+b^2}{b^2+c^2}\)
\(\Rightarrow\frac{a^2}{b^2}=\frac{a^2+b^2}{b^2+c^2}\)
\(\Rightarrow\frac{a}{b}.\frac{b}{c}=\frac{a^2+b^2}{b^2+c^2}\)
\(\Rightarrow\frac{a}{c}=\frac{a^2+b^2}{b^2+c^2}\)
\(\frac{a}{b}=\frac{b}{c}\Rightarrow ac=b^2\)
\(\Rightarrow\frac{a^2+b^2}{b^2+c^2}=\frac{a^2+ac}{ac+c^2}=\frac{a\left(a+c\right)}{c\left(a+c\right)}=\frac{a}{c}\)
Ban Kurosaki Akatsu ơi
giải thích cho minh đoạn \(\frac{a^2}{b^2}=\frac{b^2}{c^2}=\frac{a}{b}\times\frac{b}{c}\) giúp mình với
Mình ko hiểu lắm <3<3
chứng minh rằng nếu a,b,c thỏa mãn là độ dài 3 cạnh của 1 tam giác ABC thì a^2(b-c)-b^2(a-c)+c^2(a-b)=0 thì ABC cân
Thực hiện phép tính (a+b)(a^2+b^2-c^2-ab-bc-ac) và chứng minh rằng nếu a^3+b^3+c^3=3abc thì a=b=c hoặc a+b+c +0
A, cho abc = 1 và a+b+c = 1/a +1/b +1/c. Chứng minh tồn tại một trong 3 số a,b,c bằng 1
B, chứng minh rằng nếu a + b + c = n và 1/a + 1/b + 1/c = 1/n thì tồn tại một trong ba số bằng n
C, chứng minh rằng nếu 3 số a,b,c khác 0 thì thỏa mãn đẳng thức
a2 -- b2 / ab + b2 -- c2 /bc + c2 -- a2/ca =0
thì tồn tại hai số bằng nhau
Tnh:
\(^{(a^2+b^2+c^2-ab-bc-ca)\times(a+b+c)}\)và chứng minh rằng nếu a^3+B^3+c^3=3abc thì a=b=c hoặc a+b+c=0
Chứng minh rằng nếu a+b+c=0 thì a^3+b^3+c^3=3abc
Từ \(a+b+c=0\Leftrightarrow a+b=-c\)
\(\Leftrightarrow\left(a+b\right)^3=-c^3\)
\(\Leftrightarrow a^3+b^3+3ab\left(a+b\right)=-c^3\)
\(\Leftrightarrow a^3+b^3+3ab\left(-c\right)=-c^3\)
\(\Leftrightarrow a^3+b^3+c^3=3abc\)
Chứng minh rằng nếu a+b+c=0 thì a^3+b^3+c^3=3abc
ta co :a + b+c=0
=>(a+b+c)^3= 0
<=> a^3 + b^3 + c^3 + 3a^2b+3a^2c + 3b^2a+3b^2c + 3c^2a+3c^2b + 6abc =0
<=>(a^3+b^3+c^3) + (3a^2b+3a^2c+3abc ) +(3b^2a+3b^c +3abc) +(3c^2a+3c^b +3abc ) - 3abc=0
<=>(a^3+b^3+c^3) + 3a(ab+ac+bc) + 3b(ab+bc+ac) + 3c(ac+bc+ab) - 3abc=0
<=>(a^3+b^3+c^3) +3(ab+bc+ac)(a+b+c) -3abc=0
<=>(a^3+b^3+c^3) +3(ab+bc+ac).0 - 3abc =0
<=> a^3+b^3+c^3 -3abc=0
=>a^3+b^3+c^3 =3abc (dpcm)
Ta co
\(a^3+b^3+c^3-3abc\)
=\(\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc\)
=\(\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)\)
=\(\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2-3ab\right]\)
Ma a+b+c=3
=>\(a^3+b^3+c^3-3abc=0\)
=>\(a^3+b^3+c^3=3abc\)(\(ĐPCM\))