Cho tỉ lệ thức : \(\frac{a}{b}=\frac{c}{d}\)
Chứng minh: \(\left(a+2c\right).\left(b+d\right)=\left(a+c\right).\left(b+2d\right)\)
Cho tỉ lệ thức :\(\frac{a}{b}=\frac{c}{d}\)
CMR : \(\left(a+2c\right).\left(b+d\right)=\left(a+c\right).\left(b+2d\right)\)
a/b = c/d
=> a = bk và c = dk
thay vào ta có :
(bk + 2dk)(b+d) = (bk+dk)(b+2d)
=> k(b+2d)(b+d) = k(b+d)(b+2d)
xong rồi nha
K bt thì k cần phải nói
Cho tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\)
Chứng minh rằng: \(\left(a+2c\right)\left(b+d\right)=\left(a+c\right)\left(b+2d\right)\)
Giải:
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a+c}{b+d}\)
\(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{2c}{2d}=\dfrac{a+2c}{b+2d}\)
\(\Rightarrow\dfrac{a+c}{b+d}=\dfrac{a+2c}{b+2d}\)
\(\Rightarrow\left(a+2c\right)\left(b+d\right)=\left(a+c\right)\left(b+2d\right)\left(đpcm\right)\)
Vậy...
Vì \(\dfrac{a}{b}=\dfrac{c}{d}\)
\(\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\)
Đặt \(\dfrac{a}{c}=\dfrac{b}{d}=k\)
\(\Rightarrow\left[{}\begin{matrix}a=ck\\b=dk\end{matrix}\right.\) (!)
Thay (!) vào đề bài:
VT = \(c\left(k+2\right).d\left(k+1\right)\left(1\right)\)
\(VP=c\left(k+1\right).d\left(k+2\right)\left(2\right)\)
Từ (1) và (2) \(\Rightarrow VT=VP\)
hay \(\left(a+2c\right)\left(b+d\right)=\left(a+c\right)\left(b+2d\right)\).
Chứng tỏ rằng tử đẳng thức \(\left(a-2c\right)\left(b+2d\right)=\left(b-2d\right)\left(a+2c\right)\) ta suy ra tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\left(a,b,c,d\ne0\right)\)
\(\left(a-2c\right)\left(b+2d\right)=\left(b-2d\right)\left(a+2c\right)\)
\(\Leftrightarrow ab+2ad-2bc-4cd=ab+2bc-2ad-4cd\)
\(\Leftrightarrow2ad+2ad=2bc+2bc\Leftrightarrow4ab=4bc\)
\(\Leftrightarrow ad=bc\Rightarrow\dfrac{a}{b}=\dfrac{c}{d},\left(a,b,c,d\ne0\right)\)
Cho \(\frac{a}{b}=\frac{c}{d}\). Chứng minh: \(\left(a+2c\right).\left(b+d\right)=\left(a+c\right).\left(b+2d\right)\)
Ta có: \(\frac{a}{b}=\frac{c}{d}.\)
\(\Rightarrow\frac{a}{b}=\frac{c}{d}=\frac{2c}{2d}.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\) (1)
\(\frac{a}{b}=\frac{2c}{2d}=\frac{a+2c}{b+2d}\) (2)
Từ (1) và (2) \(\Rightarrow\frac{a+c}{b+d}=\frac{a+2c}{b+2d}\)
\(\Rightarrow\left(a+2c\right).\left(b+d\right)=\left(a+c\right).\left(b+2d\right)\left(đpcm\right).\)
Chúc bạn học tốt!
Cho tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\left(b\ne d\right)\).Chứng tỏ rằng ta có các tỉ lệ thức:
\(\frac{ab}{cd}=\frac{\left(a-2b\right)^2}{\left(c-2d\right)^2}\)
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{2b}{2d}\)
áp dụng t/c dãy tỉ số bằng nhau ta có:
\(\frac{a}{c}=\frac{2b}{2d}=\frac{a-2b}{c-2d}\)
\(\Rightarrow\frac{a^2}{c^2}=\frac{\left(a-2b\right)^2}{\left(c-2d\right)^2}=\frac{a}{c}\cdot\frac{a}{c}=\frac{a}{c}\cdot\frac{b}{d}=\frac{ab}{cd}\)(vì \(\frac{a}{c}=\frac{b}{d}\))
\(\Rightarrow\frac{ab}{cd}=\frac{\left(a-2b\right)^2}{\left(c-2d\right)^2}\left(đpcm\right)\)
Cho \(\frac{a}{b}=\frac{c}{d}\). Chứng minh rằng:
a.\(\left(a+2c\right).\left(b+d\right)=\left(a+c\right).\left(b+2d\right)\) b.\(\frac{a^{1005}+b^{1005}}{c^{1005}+d^{1005}}=\frac{\left(a+b\right)^{1005}}{\left(c+d\right)^{1005}}\)
Đặt \(\frac{a}{b}=\frac{c}{d}=k\\ =>\orbr{\begin{cases}a=bk\\c=dk\end{cases}}\)
\(Taco:\left(a+2c\right).\left(b+d\right)=\left(a+c\right).\left(b+2d\right)\)
\(=>\left(bk+2dk\right).\left(b+d\right)=\left(bk+dk\right).\left(b+2d\right)\)
\(=>\frac{bk+2dk}{bk+dk}=\frac{b+2d}{b+d}\)
\(=>\frac{k.\left(b+2d\right)}{k.\left(b+d\right)}=\frac{b+2d}{b+d}\)
\(=>\frac{b+2d}{b+d}=\frac{b+2d}{b+d}\)(ĐPCM)
, Chờ tí mk làm câu b
Ta có :\(\frac{a}{b}=\frac{c}{d}\)
\(\implies\)\(\frac{a}{b}=\frac{c}{d}=\frac{2c}{2d}=\frac{a+2c}{b+2d}\left(1\right)\) \(\implies\) \(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\left(2\right)\)
Từ (1);(2)\(\implies\) \(\frac{a+2c}{b+2d}=\frac{a+c}{b+d}\)
\(\implies\) \(\left(a+2c\right).\left(b+d\right)=\left(b+2d\right).\left(a+c\right)\)
P/S : ko chắc
Áp dụng tc của dãy tỉ số bằng nhau có :
\(\frac{a}{b}=\frac{c}{d}=\frac{a^{1005}+b^{1005}}{c^{1005}+d^{1005}}=\frac{\left(a+b\right)^{1005}}{\left(c+d\right)^{1005}}\)(ĐPCM)
Đánh máy ẩu v :D
\(\frac{\left(a-b\right)}{a+2b+c}+\frac{\left(b-c\right)}{b+2c+d}+\frac{\left(c-d\right)}{c+2d+a}+\frac{\left(d-a\right)}{d+2a+b}\ge0\)
chứng minh với abcd là các số thực dương.
cảm ơn,mình cần gấp ạ!!!
thôi ko cần nx đâu,mình làm được rồi,cảm ơn các bạn nha!!!
cho tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\)CM
a)\(\frac{a\cdot c}{b\cdot d}=\frac{a^2+c^2}{b^2+d^2}\)
b)\(\frac{ab}{cd}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\)
c)\(\left(a+2c\right)\cdot\left(b+d\right)=\left(a+c\right)\cdot\left(b+2d\right)\)
giúp mk vs
Chứng minh rằng ta có tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\)nếu có một trong các đẳng thức sau (giả thiết các tỉ lệ thức đều có nghĩa) :
a) \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)
b) \(\left(a+b+c+d\right)\left(a-b-c+d\right)=\left(a-b+c-d\right)\left(a+b-c-d\right)\)