Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Sang
Xem chi tiết
Viet Anh Hoang
Xem chi tiết
Lê Tài Bảo Châu
12 tháng 7 2019 lúc 20:22

Áp dụng tính chất \(\frac{a}{b}< 1\Rightarrow\frac{a}{b}< \frac{a+m}{b+m}\left(m\in N\right)\)

Ta có: \(\frac{10^{2019}-1}{10^{2020}-1}< \frac{10^{2019}-1+11}{10^{2020}-1+11}=\frac{10^{2019}+10}{10^{2020}+10}=\frac{10.\left(10^{2018}+1\right)}{10.\left(10^{2019}+1\right)}=\frac{10^{2018}+1}{10^{2019}+1}\)

\(\Rightarrow\frac{10^{2019}-1}{10^{2020}-1}< \frac{10^{2018}+1}{10^{2019}+1}\)

Huỳnh Quang Sang
12 tháng 7 2019 lúc 20:23

Đặt \(A=\frac{10^{2019}-1}{10^{2020}-1}\)

\(B=\frac{10^{2018}+1}{10^{2019}+1}\)

Dễ thấy \(A< 1\)

Áp dụng kết quả bài trên nếu \(\frac{a}{b}< 1\)thì \(\frac{a+m}{b+m}>\frac{a}{b}\)với m>0

Vậy \(A=\frac{10^{2019}-1}{10^{2020}-1}< \frac{\left[10^{2019}-1\right]+11}{\left[10^{2020}-1\right]+11}=\frac{10^{2019}+10}{10^{2020}+10}\)

\(A< \frac{10\left[10^{2018}+1\right]}{10\left[10^{2019}+1\right]}=\frac{10^{2018}+1}{10^{2019}+1}=B\)

Do đó : A<B

T.Ps
12 tháng 7 2019 lúc 20:29

#)Giải :

Đặt \(A=\frac{10^{2019}-1}{10^{2020}-1}\)

\(B=\frac{10^{2018}+1}{10^{2019}+1}\)

\(\Rightarrow10A=\frac{10^{2020}-10}{10^{2020}-1}=\frac{10^{2020}-1+9}{10^{2020}-1}=\frac{10^{2020}-1}{10^{2020}-1}+\frac{9}{10^{2020}-1}=1+\frac{9}{10^{2020}-1}\)

\(\Rightarrow10B=\frac{10^{2019}+10}{10^{2019}+1}=\frac{10^{2019}+1+9}{10^{2019}+1}=\frac{10^{2019}+1}{10^{2019}+1}+\frac{9}{10^{2019}+1}=1+\frac{9}{10^{2019}+1}\)

Dễ thấy \(10^{2020}-1>10^{2019}+1\)

\(\Rightarrow\frac{9}{10^{2020}-1}>\frac{9}{10^{2019}+1}\Rightarrow1+\frac{9}{10^{2020}-1}>1+\frac{9}{10^{2019}+1}\Rightarrow10A>10B\Rightarrow A>B\)

\(\Rightarrow\frac{10^{2019}-1}{10^{2020}-1}>\frac{10^{2018}+1}{10^{2019}+1}\)

TapL
Xem chi tiết
.
29 tháng 6 2020 lúc 15:08

Ta thấy \(B=\frac{10^{2020}+1}{10^{2020}+1}=1\)

            \(A=\frac{10^{2018}+1}{10^{2019}+1}< 1\)

\(\Rightarrow A< B\)

Vậy \(A< B.\)

Bạn có chắc là đề đúng không?

Khách vãng lai đã xóa
Fudo
29 tháng 6 2020 lúc 15:09

                             Bài giải

A < 1 ; B = 1 => A < B

Nếu đề bạn sai thì vào câu hỏi tương tự là có !

Khách vãng lai đã xóa
๖²⁴ʱ๖ۣۜTɦủү❄吻༉
29 tháng 6 2020 lúc 15:18

Ta có : \(A=\frac{10^{2018}+1}{10^{2019}+1}\)và \(B=\frac{10^{2020}+1}{10^{2020}+1}\)

Xét : \(A=\frac{10^{2018}+1}{10^{2019}+1}< 1\)(1)

Xét : \(B=\frac{10^{2020}+1}{10^{2020}+1}=1\)(2)

Từ (1) ; (2) Suy ra đpcm 

Khách vãng lai đã xóa
nguyễn ngọc thiên kim
Xem chi tiết
Sunn
9 tháng 5 2021 lúc 22:09
Chiến Thắng Lê Nguyễn
Xem chi tiết
Huỳnh Quang Sang
26 tháng 8 2020 lúc 8:42

a) Ta có : \(\frac{-60}{12}=-5=-\frac{25}{5}\)

\(-0,8=-\frac{8}{10}=-\frac{4}{5}\)

Mà -25 < -4 nên \(\frac{-25}{5}< \frac{-4}{5}\)=> \(\frac{-60}{12}< -0,8\)

b) Ta có : \(\frac{2020}{2019}=1+\frac{1}{2019}\)

\(\frac{2021}{2020}=1+\frac{1}{2020}\)

Vì \(\frac{1}{2019}>\frac{1}{2020}\)nên \(\frac{2020}{2019}>\frac{2021}{2020}\)

c) \(\frac{10^{2018}+1}{10^{2019}+1}=\frac{10\left(10^{2018}+1\right)}{10^{2019}+1}=\frac{10^{2019}+10}{10^{2019}+1}=\frac{10^{2019}+1+9}{10^{2019}+1}=1+\frac{9}{10^{2019}+1}\)(1)

\(\frac{10^{2019}+1}{10^{2020}+1}=\frac{10\left(10^{2019}+1\right)}{10^{2020}+1}=\frac{10^{2020}+10}{10^{2020}+1}=\frac{10^{2020}+1+9}{10^{2020}+1}=1+\frac{9}{10^{2020}+1}\)(2)

Đến đây tự so sánh rồi nhé

Khách vãng lai đã xóa
Nguyễn Tiến Dũng
Xem chi tiết
Trần Thảo Anh
Xem chi tiết
Xyz OLM
16 tháng 8 2020 lúc 20:15

a) Ta có A = \(\frac{2^{2018}+1}{2^{2019}+1}\)

=> 2A = \(\frac{2^{2019}+2}{2^{2019}+1}=1+\frac{1}{2^{2019}+1}\)

Lại có B = \(\frac{2^{2017}+1}{2^{2018}+1}\)

=> 2B = \(\frac{2^{2018}+2}{2^{2018}+1}=\frac{2^{2018}+1+1}{2^{2018}+1}=1+\frac{1}{2^{2018}+1}\)

Vì \(\frac{1}{2^{2018}+1}>\frac{1}{2^{2019}+1}\Rightarrow1+\frac{1}{2^{2018}+1}>1+\frac{1}{2^{2019}+1}\Rightarrow2B>2A\Rightarrow B>A\)

Khách vãng lai đã xóa
Nguyễn Thị Thu Hương
Xem chi tiết
Laura
28 tháng 1 2020 lúc 15:39

\(M=\frac{10^{2018}+1}{10^{2019}+1}\)

\(\Rightarrow10M=\frac{10\left(10^{2018}+1\right)}{10^{2019}+1}=\frac{10^{2019}+1+9}{10^{2019}+1}=1+\frac{9}{10^{2019}+1}\)

\(N=\frac{10^{2019}+1}{10^{2020}+1}\)

\(\Rightarrow10N=\frac{10\left(10^{2019}+1\right)}{10^{2020}+1}=\frac{10^{2020}+1+9}{10^{2020}+1}=1+\frac{9}{10^{2020}+1}\)

Ta co: \(\frac{9}{10^{2019}+1}>\frac{9}{10^{2020}+1}\) ma \(1=1\)

\(\Rightarrow1+\frac{9}{10^{2019}+1}>1+\frac{9}{10^{2020}+1}\)

\(\Rightarrow10M>10N\)

\(\Rightarrow M>N\)

Khách vãng lai đã xóa
võ thái sinh
Xem chi tiết
Trần Minh Hoàng
11 tháng 3 2021 lúc 12:02

Ta có \(b-a=9.10^{2019}-\dfrac{9}{10^{2021}}>0\Rightarrow b>a\).