Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Tuyết Mai
Xem chi tiết
oOo Thằng Ngốc oOo
21 tháng 2 2017 lúc 10:35

Mình mới lớp 5 nên không biết làm bài này.

Xin lỗi nha! Chúc bạn may mắn......mình chính là Đào Minh Tiến!

Dũng Lê Trí
28 tháng 4 2017 lúc 10:53

a) \(\frac{n}{n+1}\)và \(\frac{n+2}{n+3}\)

\(\frac{n}{n+1}=\frac{n\cdot\left(n+3\right)}{\left(n+1\right)\cdot\left(n+3\right)}\)

\(\frac{n+2}{n+3}=\frac{\left(n+2\right)\cdot\left(n+1\right)}{\left(n+3\right)\cdot\left(n+1\right)}\)

So sánh : \(n\cdot\left(n+3\right)\)và \(\left(n+2\right)\cdot\left(n+3\right)\)

\(n\cdot\left(n+3\right)=n^2+3n\)

\(\left(n+2\right)\cdot\left(n+3\right)=n^2+5n+6\)

\(n^2+3n< n^2+5n+6\)

\(\Leftrightarrow\frac{n}{n+1}< \frac{n+2}{n+3}\)

Dũng Lê Trí
28 tháng 4 2017 lúc 11:00

b) \(\frac{n}{2n+1}\)và \(\frac{3n+1}{6n+3}\)

\(\frac{n}{2n+1}=\frac{n\cdot\left(6n+3\right)}{\left(2n+1\right)\cdot\left(6n+3\right)}\)

\(\frac{3n+1}{6n+3}=\frac{\left(3n+1\right)\cdot\left(2n+1\right)}{\left(6n+3\right)\cdot\left(2n+1\right)}\)

So sánh : \(n\cdot\left(6n+3\right)\)và \(\left(3n+1\right)\cdot\left(2n+1\right)\)

\(n\cdot\left(6n+3\right)=6n^2+3n\)

\(\left(3n+1\right)\cdot\left(2n+1\right)=6n^2+5n+1\)

\(6n^2+3n< 6n^2+5n+1\)

\(\Leftrightarrow\frac{n}{2n+1}< \frac{3n+1}{6n+3}\)

Ran shibuki
Xem chi tiết
Trịnh Sảng và Dương Dươn...
2 tháng 6 2018 lúc 13:36

Cách 1 :

Ta có : \(\frac{n}{n+1}>\frac{n}{2n+3}\left(1\right)\)

          \(\frac{n+1}{n+2}>\frac{n+1}{2n+3}\left(2\right)\)

Cộng theo từng vế ( 1) và ( 2 ) ta được :

\(A=\frac{n}{n+1}+\frac{n+1}{n+2}>\frac{2n+1}{2n+3}=B\)

VẬY \(A>B\)

CÁCH 2

\(A=\frac{n}{n+1}+\frac{n+1}{n+2}>\frac{n}{n+2}+\frac{n+1}{n+2}\)

   \(=\frac{2n+1}{n+2}>\frac{2n+1}{2n+3}\)

VẬY A>B  

Chúc bạn học tốt ( -_- )

Kim Anh Lương Thị
Xem chi tiết
Nguyễn Thị Đoan Trang
Xem chi tiết
No Name
Xem chi tiết
POLICE Are Number One
Xem chi tiết
Lê Minh Anh
10 tháng 9 2016 lúc 20:33

\(\frac{2n+1}{n+3}=\frac{n+n+1}{n+3}=\frac{n}{n+3}+\frac{n+1}{n+3}\)

Do: \(\frac{n}{n+3}< \frac{n}{n+1};\frac{n+1}{n+3}< \frac{n+1}{n+2}\Rightarrow\frac{n}{n+3}+\frac{n+1}{n+3}< \frac{n}{n+1}+\frac{n+1}{n+2}\Rightarrow\frac{2n+1}{n+3}< \frac{n}{n+1}+\frac{n+1}{n+2}\)

Vũ Thị Thanh Thảo
Xem chi tiết
Thanh Tùng DZ
24 tháng 5 2018 lúc 16:56

a) Nhân cả tử và mẫu với 2 . 4 . 6 ... 40 ta được :

\(\frac{1.3.5...39}{21.22.23...40}=\frac{\left(1.3.5...39\right).\left(2.4.6...40\right)}{\left(21.22.23...40\right).\left(2.4.6...40\right)}\)

\(=\frac{1.2.3...39.40}{1.2.3...40.2^{20}}=\frac{1}{2^{20}}\)

b) Nhân cả tử và mẫu với 2 . 4 . 6 ... 2n ta được :

\(\frac{1.3.5...\left(2n-1\right)}{\left(n+1\right)\left(n+2\right)\left(n+3....2n\right)}=\frac{1.3.5...\left(2n-1\right).\left(2.4.6...2n\right)}{\left(n+1\right)\left(n+2\right)...\left(2n\right).\left(2.4.6...2n\right)}\)

\(=\frac{1.2.3...\left(2n-1\right).2n}{1.2.3...2n.2^n}=\frac{1}{2^n}\)

Nguyễn Thị Đoan Trang
Xem chi tiết
Jenny phạm
Xem chi tiết
Không Tên
17 tháng 1 2018 lúc 21:47

Mk làm mẫu cho 1 phần rùi các câu còn lại làm tương tự nhé

a)    \(\frac{3n-2}{n-3}=3+\frac{7}{n-3}\)

Để   \(\frac{3n-2}{n-3}\)nguyên  thì   \(\frac{7}{n-3}\)nguyên

hay     \(n-3\)\(\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)

Ta lập bảng sau:

\(n-3\)     \(-7\)               \(-1\)                   \(1\)                    \(7\)

\(n\)              \(-4\)                  \(2\)                    \(4\)                   \(10\)

Vậy....