\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x.\left(x+1\right)}=\frac{2003}{2005}\)
Tìm số tự nhiên x biết \(1+\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=1\frac{2003}{2005}\)
\(1+\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=1\frac{2003}{2005}\)
\(\frac{2}{2}+\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x\left(x+1\right)}=\frac{4008}{2005}\)
\(2.\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{x\left(x+1\right)}\right)=\frac{4008}{2005}\)
\(2.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{4008}{2005}\)
\(=>2.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{4008}{2005}\)
\(2.\left(1-\frac{1}{x+1}\right)=\frac{4008}{2005}\)
=> \(1-\frac{1}{x+1}=\frac{4008}{2005}:2=\frac{2004}{2005}\)
\(\frac{1}{x+1}=1-\frac{2004}{2005}=\frac{1}{2005}\)
=>x+1=2005
=>x=2004
1/3 + 1/6 + 1/10 +...+ 2/x(x+1) = 2014/2015
Đ/A là 2004
chúc đồng chí Chế Minh Hải học tốt
TìM X : \(1+\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+....................+\frac{2}{x.\left(x-1\right)}=1\frac{2003}{2005}\)
Tìm x biết
\(1+\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+......+\frac{2}{x\left(x+1\right)}=\frac{2003}{2005}\)
PS : Không cần làm đẹp, càng nhanh càng tốt, quan trọng là đúng!
Ta có :
\(1+\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{x\left(x+1\right)}=\frac{2003}{2005}\)
\(\Leftrightarrow\)\(1+2\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2003}{2005}\)
\(\Leftrightarrow\)\(1+2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2003}{2005}\)
\(\Leftrightarrow\)\(1+2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2003}{2005}\)
\(\Leftrightarrow\)\(1+2\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2003}{2005}\)
\(\Leftrightarrow\)\(1+1-\frac{2}{x+1}=\frac{2003}{2005}\)
\(\Leftrightarrow\)\(\frac{2}{x+1}=2-\frac{2003}{2005}\)
\(\Leftrightarrow\)\(\frac{2}{x+1}=\frac{2007}{2005}\)
\(\Leftrightarrow\)\(x+1=2:\frac{2007}{2005}\)
\(\Leftrightarrow\)\(x+1=\frac{4010}{2007}\)
\(\Leftrightarrow\)\(x=\frac{4010}{2007}-1\)
\(\Leftrightarrow\)\(x=\frac{2003}{2007}\)
Vậy \(x=\frac{2003}{2007}\)
Chúc bạn học tốt ~
Tìm x
\(\frac{1}{3}\)+\(\frac{1}{6}\)+\(\frac{1}{10}\)+.....+\(\frac{2}{x\left[x+1\right]}\)=\(\frac{2003}{2005}\)
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+.....+\frac{2}{x\left(x+1\right)}=\frac{2003}{2005}\)
\(\Leftrightarrow\frac{1}{2}\left(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+....+\frac{2}{x\left(x+1\right)}\right)=\frac{1}{2}.\frac{2003}{2005}\)
\(\Leftrightarrow\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+.....+\frac{1}{x\left(x+1\right)}=\frac{2003}{4010}\)
\(\Leftrightarrow\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+....+\frac{1}{x\left(x+1\right)}=\frac{2003}{4010}\)
\(\Leftrightarrow\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{x}-\frac{1}{x+1}=\frac{2003}{4010}\)
\(\Leftrightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{2003}{4010}\)
\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{2}-\frac{2003}{4010}=\frac{1}{2005}\)
\(\Rightarrow x+1=2005\Rightarrow x=2004\)
Giải phương trình:
1. \(\left(x^2+x\right)^2+4\left(x^2+x\right)^2=12\)
2. \(\frac{x+1}{2008}+\frac{x+2}{2007}+\frac{x+3}{2006}=\frac{x+4}{2005}+\frac{x+5}{2004}+\frac{x+6}{2003}\)
câu 2 :
\(\Leftrightarrow\)\(\frac{x+1}{2008}+\frac{x+2}{2007}+\frac{x+3}{2006}-\frac{x+4}{2005}-\frac{x+5}{2004}-\frac{x+6}{2003}\)=0
\(\Leftrightarrow\frac{x+2009}{2008}+\frac{x+2009}{2007}+\frac{x+2009}{2006}-\frac{x+2009}{2005}-\frac{x+2009}{2004}-\frac{x-2009}{2003}\)=0
\(\Leftrightarrow\left(x+2009\right)\left(\frac{1}{2008}+\frac{1}{2007}+\frac{1}{2006}-\frac{1}{2005}-\frac{1}{2004}-\frac{1}{2003}\right)\)
\(\Rightarrow x+2009=0\)
\(\Rightarrow x=-2009\)
\(1+\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+....+\frac{2}{x\left(x+1\right)}=1\frac{2003}{2004}\)
1 + 1/3 + 1/6 + 1/10 + ... + 2/x(x + 1) = 4007/2004
2/2 + 2/6 + 2/12 + 2/20 + ... + 2/x(x + 1) = 4007/2004
2 × (1/1×2 + 1/2×3 + 1/3×4 + 1/4×5 + ... + 1/x(x + 1)) = 4007/2004
1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 + ... + 1/x - 1/x + 1 = 4007/2004 : 2
1 - 1/x + 1 = 4007/2004 × 1/2
x/x + 1 = 4007/4008
=> x = 4007
a) \(\left(\frac{2}{3}x-\frac{4}{9}\right).\left(\frac{1}{2}+\frac{-3}{7}:x\right)=0\)
b) \(\frac{x+5}{2005}+\frac{x+6}{2004}+\frac{x+7}{2003}=-3\)
a)\(\left(\frac{2}{3}x-\frac{4}{9}\right).\left(\frac{1}{2}+\frac{-3}{7}:x\right)=0\)
\(\frac{2}{3}x-\frac{4}{9}=0\)hoặc\(\frac{1}{2}+\frac{-3}{7}:x=0\)
\(\frac{2}{3}x=\frac{4}{9}\)hoặc\(-\frac{3}{7}:x=-\frac{1}{2}\)
\(x=\frac{4}{9}:\frac{2}{3}\)hoặc\(x=-\frac{3}{7}:\frac{-1}{2}\)
\(x=\frac{2}{3}\)hoặc\(x=\frac{6}{7}\)
Tìm x biết
a) (8-5x).(x+2)+4.(x-2).(x+1)+2.(x-2).(x+2)=0
b)\(\left(-\frac{2}{5}+x\right):\frac{7}{9}+\left(-\frac{3}{5}+\frac{5}{6}\right):\frac{7}{9}=0\)
c)\(1+\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=1\frac{2003}{2004}\)
Bài1:Tính giá trị biểu thức sau:
A=\(\left(6:\frac{3}{5}-1\frac{1}{6}x\frac{6}{7}\right):\left(4\frac{1}{5}x\frac{10}{11}+5\frac{2}{11}\right)\)
Bài 2: Tính giá trị biểu thức:
B= \(\left(1-\frac{1}{2}\right)x\left(1-\frac{1}{3}\right)x\left(1-\frac{1}{4}\right)x\left(1-\frac{1}{5}\right)...\left(1-\frac{1}{2003}\right)x\left(1-\frac{1}{2004}\right)\)
ai xong sẽ có tích , phải làm giải từng bước ra nhé!
Bài 2:
\(B=\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).\left(1-\frac{1}{4}\right).......\left(1-\frac{1}{2004}\right)\)
\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}....\frac{2003}{2004}\)
\(=\frac{1}{2004}\)