cho 2 số tự nhiên a và 2a đều có tổng các chữ số là k.
CMR a⋮3
Hai số tự nhiên á và 2a đều có tổng các chữ số bằng k. CMR a chia hết cho 3
Cho 2 số tự nhiên A và 2A đều có tổng các chữ số là k. Chứng minh A chia hết cho 9
Vì tổng các chữ số có cùng dư khi chia cho 9 và a; 2a có tổng các chữ số giống nhau nên a; 2a có cùng dư chia cho 9.
Đặt a = 9q + r
2a =9k + r
(q; k; r thuộc N*; k > q)
=> 2a - a = a
=> (9k + r) - (9q + r)
=> 9k + r - 9q - r
=> 9(k - q) chia hết cho 9.
=> a chia hết cho 9.
Hai số tự nhiên a và 2a đều có tổng các chữ số là k . Chứng minh rằng achia hết cho 9
Cho 2 số tự nhiên a và 2a đều có tổng các chữ số bằng k. Chứng minh rằng: a chia hết cho 9
đề ra mập mờ quá
a và 2a
thế 2a là 2.a hay là 2a nói chung hiểu kiểu gì cũng sai
không tồn tại
người ra đề thử tìm hộ tôi một số a cụ thể nào thỏa mãn đề bài xem nào?
sau đó mới nâng cấp lên tổng quát.
Vì tổng các chữ số có cùng dư khi chia cho 9 và a; 2a có tổng các chữ số giống nhau nên a; 2a có cùng dư chia cho 9.
Đặt a = 9q + r
2a =9k + r
(q; k; r thuộc N*; k > q)
=> 2a - a = a
=> (9k + r) - (9q + r)
=> 9k + r - 9q - r
=> 9(k - q) chia hết cho 9.
=> a chia hết cho 9
#ngonhuminh nói đúng đó
Hai số tự nhiên a và 2a đều có tổng các chữ số bằng k.
Hai số tự nhiên a và 2a đều có tổng các chữ số bằng k. Chứng minh rằng a chia hết cho 9.
Dùng nguyên lí Dirichle để giải các bài tập sau:
1) Viết 20 số tự nhiên vào 20 tấm bìa. CMR: Ta có thể chọn 1 hay nhiều tấm bìa để tổng các số đó chia hết cho 20
2) CMR: tồn tại 1 số tự nhiên chia hết cho 17
a) Gồm toàn chữ số 1 và chữ số 0
b) Gồm toàn chữ số 1
3) CMR: Tồn tại số tự nhiên k để 3k có 3 chữ số tận cùng là 001
4) CHo 51 số tự nhiên khác 0 và không vượt quá 100. CMR:
a) Mỗi số đều viết được 2k.b(k;b thuộc N, b lẻ, k có thể = 0). Xác định khoảng giá trị của k và b
b) Tồn tại 2 số mà số này là bội của số kia
hai số tự nhiên a và 2a đều có tổng các chữ số bằng k. Chứng minh rằng a\(⋮\)9
I. Nội qui tham gia "Giúp tôi giải toán"
1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;
2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.
3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.
Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.
Ta biết rằng một số và tổng các chữ số của nó có cùng số dư trong phép chia cho 9, do đó hiệu của chúng chia hết cho 9.
Như vậy :
và
Suy ra :
...
Hai số tự nhiên a và 2a đều có tổng các chữ số là k.hãy chứng minh rằng a chia hết cho 9
Lời giải:
Một số tự nhiên có cùng số dư khi chia cho 9 với tổng các chữ số của nó. Tức là:
$a-S(a)\vdots 9$
$2a-S(2a)\vdots 9$
$\Rightarrow a-k\vdots 9; 2a-k\vdots 9$
$\Rightarrow (2a-k)-(a-k)\vdots 9$
$\Rightarrow a\vdots 9$
Hai số tự nhiên a và 2a đều có tổng các chữ số bằng chữ số k.Chứng minh rằng a chia hết cho 9.
Giải:
Ta biết rằng một số và tổng các chữ số của nó có cùng số dư trong phép chia cho 9,do đó hiệu của chúng chia hết cho 9.
Như vậy:2a-k chia hết cho 9
và a-k chia hết cho 9
Suy ra : (2a-k)-(a-k) chia hết cho 9
Do đó : a chia hết cho 9