cho tam giác ABC vuông tại A (AB>AC). Tia phân giác của góc ABC cắt AC tại D, vẽ DE vuông góc BC tại E. Cm góc BAK> góc KAC
Cho tam giác ABC vuông tại A , tia phân giác của góc B cắt AC tại D . Từ D vẽ DE vuông góc với BC ( E thuộc BC)
a) CM : tam giác ABD và tam giác EBD
b) Kéo dài DE cắt đường thẳng AB tại K . CM : AK = EC
c) CM : BD vuông góc KC
d) Vẽ EM vuông góc AC ( M thuộc AC ) , AH vuông góc BC ( H thuộc BC )
CM : AE là đường trung trực của HM
A) Xét ΔABD và ΔEBD có:
+) AB=BE (gt)
+) góc ABD= góc EBD (do BD là phân giác góc B)
+) BD chung
=> ΔABD = ΔEBD (c-g-c)
b)
Qua C kẻ đường thẳng vuông góc với BD tại H.
Xét ΔBCF có: BH là đường cao đồng thời là phân giác của góc B
=> ΔBCF cân tại B (tính chất)
=> BC= BF (điều phải chứng minh)
c)
Xét ΔABC và ΔEBF có:
+) AB = EB (gt)
+) góc B chung
+) BC= BF (câu b)
=> ΔABC = ΔEBF (c-g-c)
d)
Từ ý a, ΔABD = ΔEBD (c-g-c)
=> góc BAD= góc BED = 90
=> DE ⊥ BC
Xét ΔBCF có: BH và CA là 2 đường cao cắt nhau tại D
=> D là trực tâm
=> FD ⊥ BC
=> DE trùng với FD
=> D,E,F thẳng hàng
cho tam giác ABC vuông tại A ( AC <AB), tia phân giác góc C cắt AB tại D. Trên tia đối của tia DC lấy điểm E sao cho CD =DE, từ điểm E vẽ đường thẳng vuông góc với AB và cắt BC tại N.
a, CM : tam giác ACD = tam giác MED
b, CM: NC =NE
c, CMR: DM <DB
cho tam giác abc c vuông tại a kẻ ah vuông góc bc tia phân giác của góc hac cắt bc tại d qua d kẻ dk vuông góc ac tia phân giác của bha cắt bc tại e chứng minh ab+ac=bc+de
CHo tam giác ABC có AB=9cm, AC= 12 cm và BC = 15 cm. Vẽ tia phân giác của góc B cắt cạnh AC tại D. Trên cạnh BC lấy điểm E sao cho BE=BA. Đường thẳng DE cắt đường thẳng AB tại F. a, Chứng minh tam giác ABC vuông. b, Chứng minh DE vuông góc với BC rồi so sánh AD và DC. c, Gọi M, N lần lượt là trung điểm của AE và CF. CHứng minh ba điểm M,D,N thẳng hàng
mn giúp mik vs mik cần gấp.
cho tam giác abc vuông tại B ,tia phân giác của góc A cắt BC tại D,từ D vẽ DE vuông góc với AC (E thuộcAC ).CM BA+BC>DE
a) Xét tam giác BHA và tam giác BAC có
góc BHA= góc BAC (=90)
góc B chung
=> tam giác BHA đồng dạng tam giác BAC (g.g)
Cho tam giác ABC vuông tại A, tia phân giác của góc B cắt AC tại D.
Từ D vẽ DE vuông góc với BC ( E thuộc BC ).
a. CM. tam giác ABD = tam giác EBD
b. Kéo dài DE cắt đường thằng AB tại k. CM AK = EC.
c. CM BD vuông với KC
d. Vẽ EM vuông góc với AC ( M thuộc AC). AH vuông BC (H thuộc BC).Chứng minh: AE là đường trung trực của HM.
Cho tam giác abc có AB=6cm;AC=8cm;Bc=10cm. chứng tỏ tam giác ABC vuông tại A,Tia phân giác của góc B cắt AC tại D, kẻ DE vuông góc với BC tại E
a) Ta có:
\(BC^2=AB^2+AC^2\)
\(10^2=6^2+8^2=36+64=100\)
Áp dụng định lí Pytago đảo
⇒ Tam giác ABC vuông tại A
b) 1/ Xét tam giác ABD và tam giác EBD có
^A=^E=90o(gt)
BD: cạnh chung
^B1=^B2(BD phân giác ^B)
⇒ Tam giác ABD= tam giác EBD
2/ Em xem lại đề ha
Cho tam giác ABC vuông tại A. Tia phân giác của góc BAC cắt cạnh BC tại D. Vẽ DE vuông góc với AB ( E thuộc AB ) và DF vuông góc với AC (F thuộc AC ). Chứng minh tứ giác AEDF là hình vuông