Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Vinne
Xem chi tiết
Học Sinh Giỏi Anh
Xem chi tiết
cao van duc
16 tháng 6 2019 lúc 14:35

https://diendantoanhoc.net/topic/182493-%C4%91%E1%BB%81-thi-tuy%E1%BB%83n-sinh-v%C3%A0o-l%E1%BB%9Bp-10-%C4%91hsp-h%C3%A0-n%E1%BB%99i-n%C4%83m-2018-v%C3%B2ng-2/

cao van duc
16 tháng 6 2019 lúc 14:37

bài này năm trrong đề thi tuyển sinh vào lớp 10 ĐHSP Hà Nội Năm 2018 (vòng 2) bn có thể tìm đáp án trên mạng để tham khảo

Tuấn Nguyễn
16 tháng 6 2019 lúc 17:58

Sử dụng bất đẳng thức AM-GN, ta có:

\(x^2y^2+1\ge2xy,\) \(y^2z^2+1\ge2yz,\) \(z^2x^2+1\ge2zx\)

Cộng các bất đẳng thức trên lại theo vế, sau đó cộng hai vế của bất đẳng thức thu được với \(x^2+y^2+z^2\), ta được:

\(\left(x+y+z\right)^2\le x^2+y^2+z^2+x^2y^2+y^2z^2+z^2x^2+3=9\)

Từ đó suy ra: \(Q\le3\)

Mặt khác, dễ thấy dấu bất đẳng thức xảy ra khi \(x=y=z=1\)  nên ta có kết luận \(Max_Q=3\)

Ta sẽ chứng minh \(Q\ge\sqrt{6}\) với dấu đẳng thức xảy ra, chẳng hạn \(x=\sqrt{6},\) \(y=z=0.\) Sử dụng bất đẳng thức AM-GN, ta có:

\(2xy+x^2y^2\le x^2+y^2+x^2y^2\le x^2+y^2+z^2+x^2y^2+y^2z^2+z^2x^2=6\)

Từ đó suy ra: \(xy\le\sqrt{7}-1< 2\)

Chứng minh tương tự, ta cũng có: 

\(yz< 2,\) \(zx< 2.\)

Do đó, ta có: 

\(Q^2=x^2+y^2+z^2+2xy+2yz+2zx\ge x^2+y^2+z^2+x^2y^2+y^2z^2+z^2x^2=6\)

Hay: \(Q\ge\sqrt{6}\)

\(\Rightarrow Min_Q=\sqrt{6}\)

Hoàng Nhẫn
Xem chi tiết
Quang Vũ Văn Quang
5 tháng 12 2022 lúc 20:44

Ta thấy [TEX]y \geq 1[/TEX].
+ Nếu [TEX]y=1[/TEX] thì ta có [TEX]3^x=2^z-1[/TEX].
Xét tính chia hết cho 3 dễ thấy [TEX]z \vdots 2[/TEX]. Đặt [TEX]z=2k (k \in \mathbb{N}^*)[/TEX]
Ta có: [TEX]3^x=2^{2k}-1=(2^k-1)(2^k+1)[/TEX]
Đặt [TEX]2^k-1=3^m, 2^k+1=3^n (m,n \in \mathbb{N}^*; m+n=z) [/TEX]
Ta có: [TEX]3^n-3^m=2 \Rightarrow n=1, m=1 \Rightarrow z=2[/TEX]
[TEX]\Rightarrow z=1[/TEX]. Từ đó ta có bộ [TEX](x,y,z)=(1,1,2)[/TEX]
+ Nếu [TEX]y \geq 2[/TEX] thì ta có [TEX]2^z-2^y=3^x-1 > 0 \Rightarrow z >y[/TEX]
Lại có: [TEX]z>y \geq 2 \Rightarrow 3^x-1 \vdots 4 \Rightarrow x \vdots 2[/TEX]
Khi đó nếu [TEX]y \geq 4[/TEX] thì [TEX]3^x-1 \vdots 16 \Rightarrow x \vdots 4[/TEX]
[TEX]x=4q\Rightarrow 2^z-2^y=81^q-1\equiv 0(\text{mod 5})\Rightarrow 2^z-2^y\vdots 5\Rightarrow 2^y(2^{z-y}-1)\vdots 5[/TEX]
Từ đó [TEX]2^{z-y}-1 \vdots 5 \Rightarrow z-y=4k+2 \Rightarrow z-y \vdots 2 \Rightarrow 2^{z-y}-1 \vdots 3[/TEX]
[TEX]\Rightarrow 3^x-1 \vdots 3[/TEX](mâu thuẫn)
Suy ra [TEX]2 \leq y \leq 3[/TEX].
Nếu [TEX]y=2[/TEX] thì [TEX]3^x+3 =2^z \vdots 3[/TEX](mâu thuẫn)
Nếu [TEX]y=3[/TEX] thì [TEX]3^x+7=2^z[/TEX]. Xét đồng dư với 3 nên [TEX]z \vdots 2[/TEX].
Đặt [TEX]x=2m,z=2n \Rightarrow 2^{2n}-3^{2m}=7 \Rightarrow (2^n-3^m)(2^n+3^m)=7[/TEX]
[TEX]\Rightarrow 2^n-3^m=1,2^n+3^m=7 \Rightarrow n=2,m=1 \Rightarrow x=2,z=4[/TEX]
Vậy [TEX](x,y,z)=(1,1,2)[/TEX] hoặc [TEX](x,y,z)=(2,3,4)[/TEX]

Vinne
Xem chi tiết
Edogawa Conan
4 tháng 9 2021 lúc 10:40

Ta có: \(\dfrac{x^3}{y+2z}+\dfrac{y^3}{z+2x}+\dfrac{z^3}{x+2y}=\dfrac{x^4}{xy+2zx}+\dfrac{y^4}{yz+2xy}+\dfrac{z^4}{zx+2yz}\)

\(\ge\dfrac{\left(x^2+y^2+z^2\right)^2}{xy+2zx+yz+2xy+zx+2yz}=\dfrac{\left(x^2+y^2+z^2\right)^2}{3\left(xy+yz+zx\right)}\)

Mà ta lại có: \(xy+yz+zx\le x^2+y^2+z^2\)

 \(\Rightarrow\dfrac{\left(x^2+y^2+z^2\right)^2}{3\left(xy+yz+zx\right)}\ge\dfrac{\left(x^2+y^2+z^2\right)^2}{3\left(x^2+y^2+z^2\right)}=\dfrac{1^2}{3.1}=\dfrac{1}{3}\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=z=\dfrac{1}{\sqrt{3}}\)

Hà Thị Quỳnh
Xem chi tiết
Thắng Nguyễn
2 tháng 7 2016 lúc 16:34

\(\Leftrightarrow x-1-2\sqrt{x-1}+1+y-2-4\sqrt{y-2}\)\(+4+x-3-6\sqrt{x-3}+9=0\)

\(\Leftrightarrow\left(\sqrt{x-1}-1\right)^2+\left(\sqrt{y-2}-2\right)^2+\left(\sqrt{z-3}-3\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}x=2\\y=6\\z=12\end{cases}}\)

Nguyễn Văn Tuấn
19 tháng 2 2022 lúc 7:51

@@@

Khó quá em mới lớp 5

HT

Khách vãng lai đã xóa
dũng lê
Xem chi tiết
nguyen thi ha vy
Xem chi tiết
Lê Xuân Đức
Xem chi tiết
Hoàng Lê Bảo Ngọc
3 tháng 1 2017 lúc 11:53

Bài 2. a/ \(1\le a,b,c\le3\)  \(\Rightarrow\left(a-1\right).\left(a-3\right)\le0\) , \(\left(b-1\right)\left(b-3\right)\le0\)\(\left(c-1\right).\left(c-3\right)\le0\)

Cộng theo vế : \(a^2+b^2+c^2\le4a+4b+4c-9\)

\(\Rightarrow a+b+c\ge\frac{a^2+b^2+c^2+9}{4}=7\)

Vậy min E = 7 tại chẳng hạn, x = y = 3, z = 1

b/ Ta có : \(x+2y+z=\left(x+y\right)+\left(y+z\right)\ge2\sqrt{\left(x+y\right)\left(y+z\right)}\) 

Tương tự : \(y+2z+x\ge2\sqrt{\left(y+z\right)\left(z+x\right)}\) , \(z+2y+x\ge2\sqrt{\left(z+y\right)\left(y+x\right)}\)

Nhân theo vế : \(\left(x+2y+z\right)\left(y+2z+x\right)\left(z+2y+x\right)\ge8\left(x+y\right)\left(y+z\right)\left(z+x\right)\) hay

\(\left(x+2y+z\right)\left(y+2z+x\right)\left(z+2y+x\right)\ge64\)

trần bảo trân
2 tháng 1 2017 lúc 21:32

chẵng biết

Lê Xuân Đức
2 tháng 1 2017 lúc 21:41

khó lắm ai làm được tui chuyển 10k qa tài khoản ngân hàng =) nói là làm

Tuấn Minh Nguyễn
Xem chi tiết
Phùng Minh Quân
6 tháng 11 2018 lúc 21:52

hùi nãy mem nào k sai cho t T_T t buồn 

\(VT\ge6\left(x^2+y^2+z^2+2xy+2yz+2zx\right)-2\left(xy+yz+zx\right)+2.\frac{9}{4\left(x+y+z\right)}\)

\(=6\left(x+y+z\right)^2-2.\frac{\left(x+y+z\right)^2}{3}+\frac{9}{2\left(x+y+z\right)}=6.\left(\frac{3}{4}\right)^2-2.\frac{\left(\frac{3}{4}\right)^2}{3}+\frac{9}{2.\frac{3}{4}}\)

\(=\frac{27}{8}-\frac{3}{8}+6=9\)

\(\Rightarrow\)\(VT\ge9\) ( đpcm ) 

Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=z=\frac{1}{4}\)

Chúc bạn học tốt ~