Tìm giá tri nhỏ nhất của A biết:\(A=\left|x-2001\right|+\left|x-1\right|\)
Tìm giá trị nhỏ nhất của biểu thức sau:
\(A=\left|x-2001\right|+\left|x-1\right|\)
ta có:
\(A=\left|x-2001\right|+\left|x-1\right|=\left|x-2001\right|+\left|-x+1\right|\)
\(\Rightarrow A=\left|x-2001\right|+\left|-x+1\right|\ge\left|x-2001-x+1\right|=\left|-2000\right|=2000\)
dấu "=" xảy ra khi \(\left(x-2001\right).\left(-x+1\right)\ge0\)
\(\Rightarrow1\le x\le2001\)
Vậy GTNN của A=2000 khi 1<x<2001
Tìm giá trị nhỏ nhất của biểu thức: \(A=\left|x-2001\right|+\left|x-1\right|\)
A = |x - 2001| + |x - 1|
Có |x - 1| = |1 - x|
=> A = |x - 2001| + |1 - x|
=> A > |x - 2001 + 1 - x| = 2000
Dấu "=" xảy ra <=> (x - 2001)(1 - x) > 0
<=> x - 2001 và 1 - x cùng dấu
TH1: x - 2001 > 0 và 1 - x > 0
=> x > 2001 và x < 1 (vô lí
TH2: x - 2001 < 0 và 1 - x < 0
=> x < 2001 và x > 1
=> 1 < x < 2001 (TM)
KL: Amin = 2000 <=> 1 < x < 2001
Tìm giá trị nhỏ nhất của biểu thức :
\(A=\left|x-2001\right|+\left|x-1\right|\)
Giải:
Dễ thấy: \(\left|x-1\right|=\left|1-x\right|\)
Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:
\(A=\left|x-2001\right|+\left|1-x\right|\) \(\ge\left|x-2001+1-x\right|=2000\)
Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x-2001\ge0\\1-x\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\le2001\\x\ge1\end{matrix}\right.\)
\(\Leftrightarrow1\le x\le2001\)
Vậy \(A_{min}=2000\Leftrightarrow1\le x\le2001\)
A =/x-2001/ + /x-1/
Với x<1 ta có A = 2001 - x +1 -x =2002-2x. Khi đó A>2002
Với 1<= x <= 2001 ta có A = 2001-x +x-1 = 2000
Với x>2001ta có A=x-2001+x -1 = 2x -2000. Khi đó A> 2.2001 - 2000 =2002.
Vậy minA = 2000 khi 1<= x <= 2001.
Tìm giá trị nhỏ nhất của biểu thức
\(\left|x-2001\right|+\left|x-1\right|\)
Tìm giá trị nhỏ nhất của biểu thức:
\(B=\frac{\left(x-2001\right)\left(y-2002\right)}{\left(x-2001\right)^2+\left(y-2002\right)^2}+\frac{x-2001}{y-2002}\) \(+\frac{y-2002}{x-2001}\)
1. Cho số nguyên dương x, tìm giá trị nhỏ nhất của biểu thức:
\(P=\dfrac{\left(x+1\right)^6}{\left(x^3+7\right)\left(x^3+3x^2+4\right)}\).
2. Cho \(a,b\ge0\) thỏa mãn \(a-\sqrt{a}=\sqrt{b}-b\), tìm giá trị nhỏ nhất của biểu thức:
\(M=\left(a-b\right)\left(a+b-1\right)\).
3. Cho \(\Delta OEF\) vuông tại O có \(OE=a\), \(OF=b\), \(EF=c\) và \(\widehat{OEF}=\alpha\), \(\widehat{OFE}=\beta\).
1)
i, Chứng minh rằng không có giá trị nào của a,b,c để biểu thức \(A=\dfrac{a+b}{c}+\dfrac{c}{a+b}\) nhận giá trị nguyên.
ii, Giả sử \(c\sqrt{ab}=\sqrt{2}\) , tìm giá trị nhỏ nhất của biểu thức \(B=\left(a+b\right)^2\).
2)
i, Tìm giá trị nhỏ nhất của biểu thức \(C=\dfrac{1}{\sin^2\alpha}+\dfrac{1}{\sin^2\beta}-2\left(\sin^2\alpha+\sin^2\beta\right)+\dfrac{\sin\alpha}{\tan\alpha}-\dfrac{\tan\alpha+\cos\beta}{\cot\beta}\) .
ii, Tìm điều kiện của \(\Delta OEF\) khi \(2\cos^2\beta-\cot^2\alpha+\dfrac{1}{\sin^2\alpha}=2\).
Giúp mk nha!
1)Tìm giá trị nhỏ nhất của biểu thức sau:
\(\left|x-2002\right|+\left|x-2001\right|\)
2)Cho:\(A=\frac{7!4!}{10!}\cdot\left(\frac{8!}{3!5!}-\frac{9!}{2!5!}\right)\)
Tìm số nguyên dương x để phân số \(\frac{2001-\left|x\right|}{2002-\left|x\right|}\)đạt giá trị nhỏ nhất . Tìm giá trị nhỏ nhất ấy
Nhanh nhé 5 giờ tối học rồi!
Tìm giá trị nhỏ nhất của A biết :
\(A=\left|x-a\right|+\left|x-b\right|+\left|x-c\right|+\left|x-d\right|\) với a < b < c < d