Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn thị Tuyết Ngân
Xem chi tiết
Liên Hồng Phúc
Xem chi tiết
Nguyễn Thị Thu Trang
9 tháng 11 2015 lúc 21:32

\(A=3+3^2+3^3+...+3^{120}\)

\(\Rightarrow3A=3\left(3+3^2+3^3+...+3^{100}\right)\)

\(3A=3^2+3^3+3^4+...+3^{101}\)

\(\Rightarrow3A-A=\left(3^2+3^3+...+3^{101}\right)-\left(3+3^3+...+3^{100}\right)\)

\(\Rightarrow2A=3^{101}-3\)

\(\Rightarrow2A+3=3^{101}-3+3=3^{101}=3^n\)

\(\Rightarrow n=101\)

vậy ...

Trần Thuy Thủy
Xem chi tiết
Nguyễn Thu Thủy
Xem chi tiết
Nguyễn Phi Hòa
Xem chi tiết
Nguyễn Ngọc Quý
14 tháng 11 2015 lúc 19:23

\(3A=3^2+3^3+...+3^{121}\)

\(3A-A=\left(3^2-3^2\right)+........+\left(3^{120}-3^{120}\right)+3^{121}-3\)

A = \(\frac{3^{121}-3}{2}\)

2A + 3 = \(\frac{3^{121}-3}{2}.2+3=3^{121}=3^n\)

Vậy n = 121       

Nhiêu Trần Giáng Ngọc
29 tháng 7 2016 lúc 7:40

n=121

Trần Anh Đức
Xem chi tiết
Nguyễn Minh Đăng
10 tháng 10 2020 lúc 21:56

Ta có: \(A=3+3^2+...+3^{101}\)

\(\Leftrightarrow3A=3^2+3^3+...+3^{102}\)

\(\Rightarrow3A-A=\left(3^2+3^3+...+3^{102}\right)-\left(3+3^2+...+3^{101}\right)\)

\(\Leftrightarrow2A=3^{102}-3\)

\(\Leftrightarrow3^{2n}=2A+3=3^{102}\)

\(\Rightarrow2n=102\)

\(\Rightarrow n=51\)

Khách vãng lai đã xóa
Lê Diệu Chinh
Xem chi tiết
Diệp Liên
Xem chi tiết
Manh Ho xuan
Xem chi tiết
Mai Ngọc
31 tháng 12 2015 lúc 15:04

\(B=\frac{1}{3}+\left(\frac{1}{3}\right)^2+\left(\frac{1}{3}\right)^3+...+\left(\frac{1}{3}\right)^{2013}=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2013}}\)

\(\Rightarrow3B=3\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2013}}\right)\)

\(\Rightarrow3B=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2012}}\)

\(\Rightarrow3B-B=\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2012}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2013}}\right)\)

\(\Rightarrow2B=1-\frac{1}{3^{2013}}\Rightarrow1-2B=\frac{1}{3^{2013}}=\left(\frac{1}{3}\right)^{2013}\Rightarrow n=2013\)