CMR:
1919+6819 chia hết cho 44
CMR: 1+3+3^2+3^3+...+3^44 chia hết cho 4 và 40
CMR: 2+2^2+2^3+...+2^100 chia hết cho 3 và 5
CMR
43^4 + 43^5 chia hết cho 44
\(43^4+43^5=43^4\left(1+43\right)=43^4\cdot44⋮44\)
Đpcm
\(43^4+43^5\)
\(=43^4\left(1+43\right)\)
\(=43^4.44⋮44\) (có thừa số 44)
Vậy: \(43^4+43^5⋮44\)
\(A=43^4+43^5=43^4\left(1+43\right)=43^4.44\)
Vậy: A chia hết cho 44
CMR: 19^19+69^19 chia hết cho 44
19^19+69^19
=(19+69)(19^18-19^17.69+19^16.69^2-..............................-19.69^17+69^18)
=88(19^18+................+69^18) chia hết cho 44
CMR : 444...44 (n chữ số 4) -4n chia hết cho 9
CMR:
1919+6919 chia hết cho 44
CMR:
1919+6919 chia hết cho 44
CMR: 19\(^{19}\)+ 69\(^{69}\)chia hết cho 44
bạn Tiến dũng trương giải tào lao quá, không biết làm thì đừng cmt linh tinh nhé!
19 là số nguyên tố thì \(19^n\)làm sao chia hết cho 44 được
Giải: CHÚ Ý: mình dùng dấu = cho mod vì không gõ được
Ta có: \(19^5\)=-1 (mod 44) => \(19^{19}=\left(-1\right)^3.19^4=-37=7\left(mod44\right)\)
\(69^5=11\left(mod44\right)\Rightarrow69^{69}=1^{13}.69^4=37\left(mod44\right)\)
=> \(19^{19}+69^{69}=7+37=0\left(mod44\right)\)
vậy chia hết cho 44
Cách 2:
Ta có: \(A=69^{69}+19^{19}=\left(69^{69}+19^{69}\right)-\left(19^{69}-19^{19}\right)\)
Ta có: \(69^{69}+19^{69}⋮\left(19+69\right)\Rightarrow69^{69}+19^{69}⋮44\)
Phải CM \(19^{69}-19^{19}⋮44\), Thật vậy
\(B=19^{19}\left(19^{50}-1\right)\)
do 19 lẻ nên \(19^2=1\left(mod4\right)\)\(\Rightarrow19^{50}=1\left(mod4\right)\Rightarrow19^{50}-1⋮4\)
Có: \(19^{50}=8^{50}\left(mod11\right)\)mà
\(8^5=1\left(mod11\right)\Rightarrow8^{50}=1\left(mod11\right)\Leftrightarrow19^{50}=1\left(mod11\right)\Rightarrow19^{50}-1⋮11\)
Mà (4,11)=1
=> \(19^{69}-19^{19}⋮44\)
=> A chia hết cho 44 (ĐPCM)
(19^9) mod 44=0 suy ra 19^19 chia het cho 44
(69^6) mod 44=0 suy ra 69^69 chia het cho 44
suy ra .....19^19+69^69 chia het cho 44
Khẳng định nào sau đây sai?
Nếu tổng của hai số chia hết cho 44 và một trong hai số đó chia hết cho 44thì số còn lại chia hết cho 44.
Nếu mỗi số hạng của tổng không chia hết cho 44 thì tổng không chia hết cho 44.
Nếu mỗi số hạng của tổng chia hết cho 44 thì tổng chia hết cho 44.
Trong một tích có một thừa số chia hết cho 44 thì tích đó chia hết cho 44.
Nếu mỗi số hạng của tổng không chia hết cho 44 thì tổng không chia hết cho 44.
Khẳng định nào sau đây sai?
Nếu tổng của hai số chia hết cho 44 và một trong hai số đó chia hết cho 44thì số còn lại chia hết cho 44.
Nếu mỗi số hạng của tổng không chia hết cho 44 thì tổng không chia hết cho 44.
Nếu mỗi số hạng của tổng chia hết cho 44 thì tổng chia hết cho 44.
Trong một tích có một thừa số chia hết cho 44 thì tích đó chia hết cho 44.
Bài 1 : Tìm x :
1) 36^2-49=0
2) x^3-16x=0
3) (x-1)*(x+2)-x-2=0
4) 3x^3-27x=0
5) x^2*(x+1)+2x*(x+1)=0
6) x*(2x-3)-2*(3-2x)=0
Bài 2 : Toán chia hết :
a) CMR 8^5+2^11chia hết cho 17
b) CMR 69^2-69.5chia hết cho 32
c) CMR 328^3+172^3 chia hết cho 2000
d) CMR 19^19+69^19 chia hết cho 44
e) CMR hiệu các bình phương của hai số lẻ liên tiếp chia hết cho 8