Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Mai Thùy Trang
Xem chi tiết
Lê Nhật Khôi
14 tháng 2 2018 lúc 23:27

Thế vô tính thôi có j đâu

Mai Thùy Trang
15 tháng 2 2018 lúc 0:10

kết quả A=6 ạ?

Thân Nhật Minh
16 tháng 2 2018 lúc 23:00

Kết quả bắng 35/6 nhé

Phạm Xuân Sơn
Xem chi tiết
Thân Nhật Minh
Xem chi tiết
Huy Hoàng
14 tháng 2 2018 lúc 23:07

Ta có số nguyên âm lớn nhất là -1 => y = -1

Thay x = \(\frac{1}{2}\); y = -1 vào biểu thức, ta có:

\(\frac{x^3-3x^2+0,25xy^2-4}{x^2+y}\)\(\frac{\left(\frac{1}{2}\right)^3-3\left(\frac{1}{2}\right)^2+0,25\left(\frac{1}{2}\right)\left(-1\right)^2-4}{\left(\frac{1}{2}\right)^2+\left(-1\right)}\)\(\frac{\frac{1}{8}-3.\frac{1}{4}+\frac{1}{4}-4}{\frac{1}{4}-1}\)

\(\frac{\frac{1}{8}-1-4}{\frac{-3}{4}}\)\(\frac{\frac{-7}{8}+\frac{1}{4}-4}{\frac{-3}{4}}\)\(\frac{\frac{-7+2-32}{8}}{\frac{-3}{4}}\)\(\frac{\frac{-37}{8}}{\frac{-3}{4}}\)\(\frac{-37}{8}\left(\frac{-4}{3}\right)\)\(\frac{37}{6}\)

Vậy khi x = \(\frac{1}{2}\)và y là số nguyên âm lớn nhất thì A có giá trị là \(\frac{37}{6}\)

Hoa Lan Anh
Xem chi tiết
Thiên Hoàng
Xem chi tiết
Thiều Thị Nhung
Xem chi tiết
Nguyễn Thị Phương Lan
Xem chi tiết
Nguyễn Tuấn Hùng
Xem chi tiết
Lê Quỳnh Trang
Xem chi tiết
Thúy Ngân
30 tháng 6 2018 lúc 16:42

1/a) Ta có: \(A=x^4+\left(y-2\right)^2-8\ge-8\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x=0\\y-2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=0\\y=2\end{cases}}\)

Vậy GTNN của A = -8 khi x=0, y=2.

b) Ta có: \(B=|x-3|+|x-7|\)

\(=|x-3|+|7-x|\ge|x-3+7-x|=4\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x\ge3\\x\le7\end{cases}}\Rightarrow3\le x\le7\)

Vậy GTNN của B = 4 khi \(3\le x\le7\)

2/ a) Ta có: \(xy+3x-7y=21\Rightarrow xy+3x-7y-21=0\)

\(\Rightarrow x\left(y+3\right)-7\left(y+3\right)=0\Rightarrow\left(x-7\right)\left(y+3\right)=0\)

\(\Rightarrow\hept{\begin{cases}x=7\\y=-3\end{cases}}\)

b) Ta có: \(\frac{x+3}{y+5}=\frac{3}{5}\)và \(x+y=16\)

Áp dụng tính chất bằng nhau của dãy tỉ số, ta có:

\(\frac{x+3}{y+5}=\frac{3}{5}\Rightarrow\frac{x+3}{3}=\frac{y+5}{5}=\frac{x+y+8}{8}=\frac{16+8}{8}=\frac{24}{8}=3\)

\(\Rightarrow\hept{\begin{cases}\frac{x+3}{3}=3\Rightarrow x+3=9\Rightarrow x=6\\\frac{y+5}{5}=3\Rightarrow y+5=15\Rightarrow y=10\end{cases}}\)

Bài 3: đề không rõ.

Phạm Tuấn Đạt
30 tháng 6 2018 lúc 16:26

Bài 1:\(a,A=x^4+\left(y-2\right)^2-8\)

Có \(x^4\ge0;\left(y-2\right)^2\ge0\)

\(\Rightarrow A\ge0+0-8=-8\)

Dấu "=" xảy ra khi \(MinA=-8\Leftrightarrow x=0;y=2\)

\(b,B=\left|x-3\right|+\left|x-7\right|\)

\(\Rightarrow B=\left|x-3\right|+\left|7-x\right|\)

\(\Rightarrow B\ge\left|x-3+7-x\right|\)

\(\Rightarrow B\ge\left|-10\right|=10\)

Dấu "=" xảy ra khi \(MinB=10\Leftrightarrow3\le x\le7\Rightarrow x\in\left(3;4;5;6;7\right)\)

Dương Lam Hàng
30 tháng 6 2018 lúc 16:26

Bài 1: a) Ta có: \(x^4=\left(x^2\right)^2\ge0\left(\forall x\in Z\right)\)

                       \(\left(y-2\right)^2\ge0\left(\forall y\in Z\right)\)

\(\Rightarrow A=x^4+\left(y-2\right)^2+\left(-8\right)\ge-8\)

Dấu "=" xảy ra <=> x = 0

                              (y-2)2 = 0 <=> y - 2 = 0 <=> y = 2

Vậy Amin = -8 khi và chỉ khi x = 0 và y = 2

b) Ta có: \(\left|x-3\right|+\left|x-7\right|=\left|3-x\right|+\left|x-7\right|\ge\left|3-x+x-7\right|=4\)

Dấu "=" xảy ra <=> 3 - x  = 0 <=> x = 3

                         Và x - 7 = 0 <=> x = 7

Vậy BMIN = 4 khi và chỉ khi x = 3; x = 7