Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyen quynh trang
Xem chi tiết
Nguyễn Thanh Bình
Xem chi tiết
Lê Huyền My
Xem chi tiết
 .
16 tháng 12 2018 lúc 19:56

Ta có: (a3+b3+c3)/ (b3+c3+d3) = a3/b= b3/c= c3/d3 (1)

mà b2 = ac ; c2 = bd

=> b3/c= bac/cbd = a/d (2)

Từ (1) & (2) => (a3+b3+c3)/ (b3+c3+d3) = a/d

Ngọc Mai Lê
27 tháng 3 lúc 19:22

Ta có: (a3+b3+c3)/ (b3+c3+d3) = a3/b= b3/c= c3/d3 (1)

mà b2 = ac ; c2 = bd

=> b3/c= bac/cbd = a/d (2)

Từ (1) & (2) => (a3+b3+c3)/ (b3+c3+d3) = a/d

Phú Phan Đào Ngọc
Xem chi tiết
Incursion_03
8 tháng 11 2018 lúc 22:20

rồi sao ? đề bắt chứng minh cái gì ?

Phú Phan Đào Ngọc
8 tháng 11 2018 lúc 22:34

mik có ghi lại câu hỏi r đấy cố gắng search ra nha bn

trung vlogs thành
25 tháng 11 2018 lúc 16:30

Bạn chất AOV ko

Phạm Bảo Ngọc
Xem chi tiết
Đinh Đức Hùng
7 tháng 4 2017 lúc 11:19

\(b^2=ac\Rightarrow\frac{a}{b}=\frac{b}{c};c^2=bd\Rightarrow\frac{b}{c}=\frac{c}{d}\)

\(\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{a+b+c}{b+c+d}\)

\(\Rightarrow\left(\frac{a}{b}\right)^3=\left(\frac{b}{c}\right)^3=\left(\frac{c}{d}\right)^3=\left(\frac{a+b+c}{b+c+d}\right)^3\) (1)

Ta lại có : \(\left(\frac{a}{b}\right)^3=\frac{a}{b}.\frac{a}{b}.\frac{a}{b}=\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\frac{a}{d}\) (2)

Từ (1) ; (2) => \(\frac{a}{d}=\left(\frac{a+b+c}{b+c+d}\right)^3\) (ĐPCM)

Thắm Mẫn
Xem chi tiết
kagaj Naruto
15 tháng 2 2015 lúc 9:06

mày có thể tự suy nghĩ ra rùi đặt k rùi làm dễ vkl

 

KID_1412
7 tháng 12 2016 lúc 19:42

bạn đặt a ra dùi tính như thường

Nguyễn hữu đăng khoa
11 tháng 12 2017 lúc 19:32

Ủa cũng câu như thế vậy b^3+c^3+d^3=a/d

Cac chien binh thuy thu...
Xem chi tiết
Cac chien binh thuy thu...
8 tháng 11 2015 lúc 20:31

Up ba, giải giúp mik dới !!!!!!!!!

Yuki
Xem chi tiết
Yuki
Xem chi tiết
Trần Thị Loan
4 tháng 11 2015 lúc 0:35

b2 = ac => a/b = b/c

c2 = bd => b/c = c/d

=> a/b = b/c = c/d => a3/b= b3/c= c3/d3 = (a+ b3 + c3) / (b3 + c3 + d3) (Theo t/c của dãy tỉ số bằng nhau)

Mà a3/b= a/b .a/b .a/b = a/b. b/c . c/d = a/d

Nên  (a+ b3 + c3) / (b3 + c3 + d3) = a/d

Đinh Tuấn Việt
3 tháng 11 2015 lúc 22:09

Ta có: (a3+b3+c3)/ (b3+c3+d3) = a3/b= b3/c= c3/d3 (1)

Mà b2 = ac ; c2 = bd

=> b3/c= bac/cbd = a/d (2)

Từ (1) & (2) => (a3+b3+c3)/ (b3+c3+d3) = a/d

Công chúa bong bóng
26 tháng 12 2016 lúc 15:44

Đúng quá lun z mà mik suy nghĩ mãi không ra đôi lúc nó chỉ là bài toán dễ thui nhưng chẳng qua là mik lười ko chịu suy nghĩ

lien nguyen
Xem chi tiết